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Executive summary

This Deliverable report presents the work developed by Whiffle in the framework of Task 2.4 (‘To-
wards innovative data assimilation in LES based weather models’) from the Smart4RES project.
The aim of this Task was to improve short-term forecasts with LES by using local observations as
formulated by KPI 1.1 ("10% RMSE reduction of wind speed and radiative variables for LES fore-
casts a few hours ahead’). A data assimilation method based on Ensemble Kalman filtering was
developed and fested in this task. To facilitate numerical experiments, a single-column model
that is conceptually close to Whiffle’s operational Large-Eddy Simulation (LES) model was de-
veloped and tested against observations and LES results. First, a proof-of-concept study with
data-assimilation using numerical simulations of a stable atmospheric boundary layer was per-
formed. Secondly, data-assimilation experiments using observations from the Cabauw meteo-
rological met-mast were performed and compared against forecasts without data-assimilation.
Results show that the EnKF is a suitable framework for data-assimilation in which both local at-
mospheric stare variables as well as large-scale pressure gradients can be estimated. Over the
first few forecast hours, a reduction of RMSE and MAE between 25% (immediately after data-
assimilation) and 5-10% after 2 hours was observed. An initialisation experiment of a nocturnal
fog layer qualitatively showed that using observations enhances the representation of the fog
layer. Future work will focus on the implementation of the Ensemble Kalman filter in Whiffle’s
operation LES model.
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Acronyms

ECMWEF European Cenftre for Medium-Range Weather Forecasts.

EnKF Ensemble Kalman Filter.

KPI Key Performance Indicator.

LES Large-Eddy Simulation.

NWP Numerical Weather Prediction.

SCM Single-column model.

I. Infroduction

Short-term forecasting of solar and wind energy is important for tfrading in renewable energy
sources (RES) and grid stability. Trade on the day-ahead markets happens roughly between 12h
and 36h in advance and is therefore based on forecasts that were generated even earlier, ap-
proximately between 24h and 48h in advance. For these forecast horizons, numerical weather
prediction (NWP) based forecasts have the highest quality and thus form the basis of those wind
and solar energy forecasts. However, the NWP based forecasts have lower skill than data-driven
methods that use observations on short-time intervals, say from one minute to several hours
ahead.

One of the reasons for this is the computation time needed to produce the NWP based fore-
cast. The computation time is needed for two sequential steps: 1) the data-assimilation process
that uses observations to estimate the initial condition of the NWP model and 2) the forward
intfegration over the forecast horizon. As a result, there is a lag of several hours between the
first available forecast fimestep and the last measurement that were taken into account in the
observations Yang et al. (2022). At the moment the NWP forecast becomes available, the infor-
mation that was used to produce it is already several hours old and the first forecast timesteps
are not that close to reality.

Assimilation of measurement data into a local atmospheric model - one of significantly lower
dimension and possibly higher resolution - could have the benefit of a faster assimilation time
and thus produce a forecast aware of the current atmospheric conditions. In comparison with
purely statistical models like the VARX models (vector autoregressive models with exogenous
inputs, see e.g. Messner and Pinson (2019)), using a physics based model has the benefit that
the governing equations of atmospheric physics provide correlations between model variables
that are hard to learn from data only. As an example, the relation between wind speed at 10m
and wind speed at 100m is strongly dependent on atmospheric stability.

The use of high-resolution local atmospheric models as a basis for RES forecasting also has clear
benefits over the large-scale NWP models because they can capture relevant physics like local
terrain details, wind farm wake effects and low clouds and fog. As a result, Large-Eddy Simu-
lation (LES) has emerged as a flow modelling and forecasting technique for renewable energy
purposes (currently mostly for wind energy) Gilbert et al. (2020); Schepers et al. (2021); Verzijl-
bergh (2021); Baas et al. (2022).
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Data-assimilation in atmospheric models has been one of the backbones of operational numer-
ical weather prediction and as a consequence it is a well-established scienfific field with a long
history Kalnay (2002); Bauer et al. (2015). At the same time, however, it is a highly specialised
and technical field where a relatively small number of experts are active. Possibly this is one of
the reasons why data assimilation has not been studied much in the context of renewable en-
ergy forecasting. Today’s approaches to data-assimilation in operational weather forecast cen-
tres are mostly based on either variational approaches abbreviated with 3D-VAR and 4D-VAR
(where time is included as dimension) for example for the ECMWF (ECMWF, 2021), UK Met-Office
(Milan et al., 2020) and Meteo-France’s global model ARPEGE (Courtier et al., 1994). Ensemble
based approaches are mostly used in higher-resolution models, see e.g. Gustafsson et al. (2018)
for an overview on this. Recently, some operational weather models started using hybrid models
that combine ensemble based and variational methods, like ICON global (DWD, 2023) and the
GFS model (Kleist and Ide, 2015).

This document is organized in the following way: chapter 2 presents the background on data as-
similation in general and the data assimilation algorithm used in this work: the ensemble Kalman
filter. Chapter 3 presents a single column atmospheric model that is used for experimentation
instead of an LES model. The use of simplified model was preferred because it allows for rapid
experimentation, can be easily inferpreted conceptually and does not require a complex high-
performance infrastructure. The single-column model should not be considered a full-blown
weather model, but only a simplified model that captures the momentum and temperature
evolution. Clouds and humidity effects are ignored in this model. Chapter 4 presents results of a
number of case studies: a proof-of-concept study with the GABLS case (a stable atmospheric
boundary layer), a dynamic case where tendencies from the ECMWF high-resolution forecast
are used as dynamic boundary conditions and actual observations are used.

The work has been performed as part of the Smart4RES project Camal et al. (2021). Eventually,
the data assimilation methods described in the document will be implemented in a large-eddy
simulation (LES) model and possibly included in the operational forecast model of Whiffle. To de-
velop and analyse the algorithms, a simpler and faster single-column model was used instead
of a full-blown atmospheric LES. This report describes the initial experiments carried out with the
single-column model. Partly due to the simplicity of the single column model, these experiments
should not be considered to be representative for an operational forecast context, so quantita-
tive error scores should be understood as such.
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Figure 1 Schematic view of data assimilation in a prediction and filtering framework. Figure from Carrassi
et al. (2018).

Il. Data-assimilation

Data-assimilation, a term mostly used within the geosciences, refers to the process of finding the
state of a model given observed data. In the field of control theory it is widely known as state-
estimation, or how to estimate the state of a dynamical system given a set of (possibly noisy)
measurements of a part of the system.

Data assimilation in NWP can thus also be seen as the process in which the initial conditions for
the model are estimated. The result of this process, i.e. the initial condition is known as the analy-
sis, and it is the starting point for the integrations forward in time that form the predictions. When
the process of data assimilation is carried out sequentially whereby new measurements are con-
stantly assimilated, this process is often referred to as filtering. Figure 1 shows schematically the
data assimilation process in prediction and filtering.

Two closely related data assimilation algorithms have been explored in this research: the Un-
scented Kalman filter and the Ensemble Kalman Filter (EnKF), with an emphasis on the latter. We
start with a brief description of the EnKF and Ilater describe how the Unscented Kalman filter dif-
fers from it. For a more rigorous treatment of ENKF in the context of the geosciences, the reader is
referred to Evensen (2006) and Houtekamer and Zhang (2016). For recent overviews and back-
ground about data assimilation in general, we refer to Evensen et al. (2022) and Carrassi et al.
(2018).
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II.1 The Ensemble Kalman Filter

The traditional Kalman Filter was developed in the field of control theory. The original Kalman
Filter assumes linear systems in which both the time dynamics and the observations can be
expressed as linear functions of the state variables. Several variations of the Kalman Filter have
been proposed that can handle non-linear dynamics and observations operators, of which one
gained particular fraction in the geoscience community: the Ensemble Kalman Filter (EnKF).

The essence of a Kalman Filter is to apply a correction to a model state by multiplying a differ-
ence in observed state and model state:

Xupda,te =x+ Ky (])

in which x denotes the vector of all model state variables, and y = zmod — Zobs 1S The difference
between the model and the observation in observation space, see below. The strength of the
correction, or Kalman gain K, depends on how much observation error is assumed, how much
error the model prediction has and how strong the correlations are between observed and
unobserved variables. It is given by:

K=P,P ! @

with P, the cross-variaonce matrix and P, the model covarionce matrix (or background error
matrix). In the Ensemble Kalman Filter, the cross-variance matrix and model covariance matrix
are estimated based on the differences between a finite set of N model ensemble members
x;). The covariance matrices can be derived from the ensemble members as:

1 N
Z= ) i €)

p. — Lz(zi —#)(z -2 +R %

Here R is an appropriate covariaonce matrix representing measurement noise. An “observation’
from an ensemble member represents the state variables of that ensemble member passed
through the observation operator:

Z; = h(Xz‘) ®

The use of an arbitrary function as an observation operator is one of the attractive features of the
EnKF, since it allows for observations that are a non-linear function of the model state variables. A
relevant example in the context of RES forecasting would be the use of wind power observations,
which depend in a non-linear way on wind speed and other atmospheric variables.

The cross-variance matrix P, is computed from the ensemble members:

N

P..=Y (x;—%)(z; —2)" ©

=0

To apply the EnKF, a sequence of a predict and update steps is performed. In the predict step,
we run all ensemble members through the process model operator. In our case, this means that

il ’
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for all our ensemble members, we perform forward infegrations of the atmospheric model. Then,
the ensemble members are passed through the observation operator and the Kalman gain is
computed.

To summarize, we have the following algorithm:
1. Integrate ensemble members:
xi = f(xi) + Q @
2. Pass ensemble memibers through observation operator:
z; = h(x;)

3. Compute covariance, cross-variance and Kalman gain:

|
.MZ

Pz (Zi —Z)(Zi—Z)T—FR
=0
N

P, =Y (x—%)(z—2)

=0

K=P,P,!

4. Update all ensemble members:
X; = X; + K(Zobs — 2j + VR] @

The term vy in the last step denotes a random measurement error imposed on the measure-
ments, with the effect that the observations are also tfreated as a stochastic process. The pro-
cess noise Q has been set to zero in this research, because the way the ensemble members are
constructed infroduces enough uncertainty.

As shown in Figure 1, the above sequence can be repeated in a filtering context or performed
once when the aim is to find an initial condition for a prediction.

The choice of ensemble members has not been discussed yet. This is a crucial step, since the
spread in ensemble members will determine the model covariance matrix and thus the Kalman
gain. By choosing ensemble members that are very close to each other, the EnKF will assign a
very high weight to the model predictions and will discard the observations almost completely.
Alternatively, when the ensemble members are too different, there will be little correlation be-
tween the observations and the unobserved model variables and the EnKF will at best only
adjust the model variables that are directly observed. We describe two different strategies for
choosing the ensemble member perturbations in the experimental setup section.

1.2 Unscented Kalman filter

The Unscented Kalman Filter (UKF) Van Der Merwe (2004) is closely related to the EnKFE It, too,
uses ensemble members to estimate the model covariance and the cross-variance between
model and observations. The two main differences are the way in which the ensemble mem-
bers are created and the fact that ensemble members are created again for each update
step. Initial experiments have been performed with this algorithm, but it was concluded that the
method in which the ensemble members are constructed in the UKF leads to physically unrealis-
tic wind-speed profiles. After applying some heuristic methods o remedy this and because the
construction of the ensemble members is an integral part of the UKF, it was decided to abandon
experiments with the UKF altogether and focus on the EnKF instead.

n .
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Ill. Model and observations

In this section we describe the single-column model and the observations used in this study. As
reference model, we use Whiffle’s LES model GRASE of which a recent description is given by
Baas et al. (2022).

lll.1 Single column model

Single column models are used in atmospheric sciences as conceptually simple and compu-
tationally cheap replacements for full-blown models. They allow for rapid experimentation of
changes to a model, for example a new physics parameterization. Single-column models de-
scribe the evolution of an atmospheric column and have no spatial coordinate. Large-scale
processes like pressure gradients or the advection of momentum or temperature thus have to
be supplied as external forcings to the model. LES models, when run for small domains with peri-
odic boundary conditions, are conceptually similar to a single column model, see Neggers et al.
(2012).

llI.1.1 Governing equations

In the formulations below, following conventions in the atmospheric community, ferms with over-
bars and prime variables represent turbulent transport that is not resolved explicitly by the model
but needs a parameterization. We start with the governing equations for the u- and v-momentum
components and temperature 6, that are given by:

Ou  10p w'u' B _@

Y T A S G i » ®
dv  10p w'v' w'v’

E__pay_fu_ 0z fu—uy) 0z ao
00 w'f’

%= av

with f the Coriolis parameter and p the air density. In the second equality on the right side, we
defined the geostrophic wind components:

~ 1op
_1op
'Ug—;% (]3)

The geostrophic wind is the wind resulting from a pressure gradient in the absence of friction.
The rate of change of the momentum components is thus given by the balance between the

geostrophic forcing and the vertical divergence of the turbulent fluxes 4% and 4%,
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1.1.2 Closure

The turbulent fluxes are modeled with the eddy-viscosity concept that relates the local fluxes to
the local gradient (see e.g. Holtslag and Boville (1993) ):

ou

w'u = —Kma 14

w'v = —Km@ (15)
0z

o — i, 20 (16)
0z

The values for the eddy-viscosities for momentum K,, and heat K; (not to be confused with the
symbol K for Kalman gain) are parameterized as:

K, = K, = 2Sf(Ri) a7

where the length scale [, is given by a height dependence and a critical length scale A\, =
30 (1 + exp(1 — 2/1000)) that has a value of 30m in the mixed layer (assumed to be 1000m high)
and decrease exponentially in higher air layers:

where x = 0.4 is the Von Karman constant and the absolute wind shear S given by:
ou\ 2 ov\?
2 _
|S]° = <8z> +<8z) a9

The dependence on the Richardson number Ri according to Holtslag and Boville (1993) is:

f(Ri):{[HmRi(HRi)rl if Ri>0 00

[1—18R(]"Y? if Ri<o0

with the gradient Richardson numiber, a measure of atmospheric stability that expresses the ratio
of buoyancy over shear, defined as:

Ri=J0: 3

l1.L1.3 Boundary conditions

For the lower boundary conditions, the well-known universal flux-profile relations from the Monin-
Obukhov similarity theory are used:

ou Uy
5 = o dm(z/L) @2
a0 0.
5 = on(=/D) 23

with u, the friction velocity and 6, a scaling parameter for temperature. The universal functions
om(z/L) and ¢p(z/L) are empirically determined functions of the dimensionless number z/L in
which L represents the Obukhov length.

H :
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Integration of the flux-profile relations leads to:

u(z) = % {log (;) - \Ilm(z/L)} ©24)
0(2) = 6o — % {log <z§h> _ \I/h(z/L)} 25)
| 26)

We use settings common in LES models for the integrated flux-gradient functions ¥, and ¥,
i.e. Businger-Dyer for unstable cases and Beljaars-Holtslag (1991) for stable cases, see e.g. Heus
et al. (2010).

The surface fluxes can then be computed as:

u’w’o = —CM|U1|U1 (27)
Wo = —C’M|u1|v1 (28)
Ow'y = —Crlua| (61 — bo) @9

where the subscript 1 refers to the first model level and the transfer coefficients for momentum
Cyr and heat Cy given by:

/{2

[log (2) = W (/L) ’

KZ

[1og (T,) - qu(z/L)] [log ( Z;h) - \Ilh(z/L)}

Cyu = (30)

Cy = (€2))

The Obukhov length L is found iteratively like described in Heus et al. (2010).

lll.1.4 Large scale forcings

The information of the large-scale weather evolution is given to the single column model by
prescribing dynamic tendencies. This method is identical to how LES or single column models
are often run, see e.g. Neggers et al. (2012), Schalkwijk et al. (2015) and Baas et al. (2018). The
governing equations are appended as follows:

) o lanl 1

S = f 0 =vg) = T+ S = ~(u—u") 32)
8”__ _ _ﬂ adv L, g

i f(u—uy) P + 57 T(U v 33)
00 0w . 1

%= 5 + Sy —;(0—9“) (34)

where the variables «**, v* and # denote the values of the wind components and tempera-
ture from the large-scale model. The large-scale advection terms S2%, S2% and S§ are diag-
nosed from the large-scale model. The last terms 1 (u —u*®) are nudging or relaxation terms that

n :
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prevent the variables from drifting too far away from the large-scale model values. The nudging
time-scale r determines the strength of the relaxation and is set to 6 hours in the present study.

Furthermore, the surface temperature tendency is also taken from the large-scale model:

a0, 00LS
570 - 835 (39)

1I.1.5 Variables used for data-assimilation

With the definition of the single-column model, we can connect the model state variables to
the EnKF algorithm described in the previous chapter. In theory, the EnKF could also be used
for parameter estimation, but we have not pursued that in the current research. However,
the geostrophic wind components have been included in the data-assimilation algorithm. This
means that the vector x consists of the atmospheric variables «, v and 6 on all height levels
extended with the geostrophic forcings u, and v, on all levels:

X = ul e uNZ Ul e UNZ 01 e aNz ugvo “ee ug,Nz ug’o . e IUg,Nz] (36)

1.2 Observations

The Cabauw meteorological tower provides high-quality and well documented atmospheric
observations, see Bosveld et al. (2020). Figure 2 shows a picture of this 200m high tower.

A variety of advanced atmospheric and soil measurements are available, but most relevant for
the current study are the tower measurements of wind speed and temperature. In addition,
a dataset of ‘observed’ geostrophic winds is available that have been computed by fitting a
pressure gradient field using neighbouring meteorological stations, see Bosveld (2020) for more
information on this procedure. The observed geostrophic winds are particularly relevant be-
cause they are the main drivers of the wind speeds. Neggers et al. (2012) also used the Cabauw
facility for experimenting with single-column atmospheric models.

.3 Validation of the single column model

Because the single-column model is a conceptual and highly simplified model it is not intended
for use in an operational setting. Rather, it is used as a substitute for more complex atmospheric
LES model that allows rapid experimentation on different data-assimilation approaches. Never-
theless, it is insightful to look at its performance in relation to the more advanced LES model.

I1.3.1 GABLS

The GABLS1 case is a well-known intercomparison in the LES community, see Beare et al. (2006)
and Kosovic and Curry (2000). It describes a stably stratified arctic boundary layer that is char-
acterized by a low-level jet and a strong vertical gradient in wind direction. The case has a
constant geostrophic wind forcing of 8 m/s, an initial potential temperature profile of a constant
265 K over the first 100m (i.e. a well-mixed layer) fopped by a stably stratified layer with a temper-
ature gradient of 1K/km. At the surface, a cooling rate of 0.25 K/hour is applied. For the GABLS

14
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Figure 2 The Cabauw tower.

case, the Blackader lengthscale . is set to a small value of 6.0. The domain height was set to
400m with 128 vertical levels, yielding a resolution of 3.125m

The results of the SCM as well as LES results (with run settings identical to Beare et al. (2006)) for
the GABLS case are shown in Figure 3. The SCM shows a quite comparable evolution of the
boundary layer as the GRASP LES model, especially in the momentum components. The tem-
perature mixing is markedly less strong in the SCM. This could be due to a higher aerodynamic
resistance at the surface and/or due to less turbulent mixing.

111.3.2 Cabauw

As a second validation case, the SCM has been compared with observations from the Cabauw
metmast. In this case, dynamical tendencies from the ECMWF high-resolution forecast have
been used in both the LES and the SCM. The LES has been run with a horizontal resolution of
100m, a vertical resolution of 26m and a domain height of 3200m. The SCM has been run with
a vertical resolution of 32m and a domain height of 4096m. Figure 4 shows the evolution of the
vertical u-component wind speed profiles for the SCM, the LES and the tower observations for
two typical days in January 2018.

The single-column model shows similar profiles as the LES and the observations. In other cases
(not shown here), it was found that the single-column model has difficulties in representing strong
shear cases. Also, cooling of the atmosphere near the ground is not well captured by the SCM.
Overall, the similarity between the single-column model and the LES is considered sufficient for
the purpose in this study: to perform preliminary data assimilation experiments for short-term
forecasting with a local atmospheric model.

This project has received funding from the European Union’s Horizon 2020 research 15
and innovation programme under grant agreement No 864337
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Figure 3 Comparison of GABLS results between the GRASP LES model (blue lines) and the single column
model (red lines) for the first 9 hours of simulation. The LES results represent horizontal averages. The different
red and blue shades correspond to different simulation times: from 1 hour (light red/blue) to 9 hours (dark
red/blue)

IV. Experimental sefup and results

IV.1 GABLS case

A data assimilation experiment using the GABLS case is set-up as follows: a reference case a
geostrophic wind of 6 m/s (instead of the original 8 m/s) is run. Since the geostrophic forcing is
constant in time, the only dynamics in the case is the evolution of the boundary layer and the
cooling of the surface, see also figure 3. This run is freated as the ‘reality’ from which observations
are sampled and used as input for the EnKF. The ensemble members (N = 10) are created by
perturbing the original geostrophic forcing of 8 m/s by an extra component drawn from a normal
distribution with ¢ = 0 and o = 1 m/s. In the experiment, a virtual metmast samples observations
of u, v and 6 from the reference run from the lowest model level at 3.125m to the 10th level at
30m height. A sequence of 6 predict-update steps has been performed, each prediction step
with a horizon of 600 seconds.

Figure 5 shows the results of the GABLS experiment for the u-component of the wind and the
temperature. It can be seen in the top right panel that the EnKF already assimilates the meao-
surements from the reference profile correctly: the ensemble mean is very close to the reference
profile from which the measurements were sampled. Secondly, one observes that the ensem-
ble spread collapses. This already happened in the first step of the EnKF sequence (not shown
here) and as a result, during the EnKF sequence, the updates become more insensitive to the
observations.

It is also noteworthy that the EnKF manages to adapt the geostrophic wind very well, even
though it was not part of the observed variables. This can be seen by the constant wind speed
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Figure 4 Comparison of single-column model with LES and observations on two days in January 2018.
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Figure 5 Overview of the GABLS data assimilation experiment with measurements. Panels show the vertical
profiles of u-component wind speed and temperature.
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Figure 6 Schematic representation of the ensemble member initialisation process. When the assimilation
starts at tussimilation, €ACh €@nsemble member represents a model integration until a different lead time.

above roughly 100m which is adjusted to the correct value of 6 m/s. Apparently, the correlation
between the lower level variables and the geostrophic forcings was strong enough to adjust the
unobserved variables correctly.

The GABLS results provide a proof-of-concept for data assimilation in a single-column model
with an EnKFE It should, however, be acknowledged that this is a relatively simple case in which
the reality was artificially constructed using the same model and there was littfle atmospheric
dynamics.

IV.2 Dynamic model with real observations

As a more realistic experiment, we used the single-column model with the large-scale tenden-
cies from the ECMWF high-resolution forecast and assimilated real Cabauw observations. The
experiment was set-up as follows.

Ensemble members were created by running the single column N = 10 times with different inte-
gration times around the assimilation time at which the observations are available. This process
is illustrated schematically in Figure 6.

The rationale behind this choice is that one of the largest sources of uncertainty in a local fore-
cast model comes from the large-scale conditions, for example in the exact timing or location of
passing weather systems. The ensemble thus represents all forecasted states of the atmosphere
between two given moments in time. We started the forecast at QUTC and used spin-up times
distributed uniformly between 30 minutes and 3.5 hours ahead. The mean spin-up fime was thus
2 hours. We then assimilated the Cabauw tower measurements from 1TUTC and used this in a
single update step, i.e. not a sequence of predict-update steps like the GABLS case. We used
the tower measurements of «, v and # and the ground ‘measurements’ of u, and v, . After the
update step, we set the model state to the ensemble mean and performed forward integra-
tions of this model only. The reason why the individual ensemble members are not integrated
further in time is that we are mainly interested in the best estimate of the atmospheric state at
the assimilation fime and to save computational cost.

"Note that this is different that the GABLS case, in which no observations of the geostrophic wind were used
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Figure 7 Overview of one day (2018-01-17) in the SCM data assimilation experiment with Cabauw mea-
surements. Panels show the vertical profiles of u-component wind speed and femperature.

Because the u, and v, components are external inputs to the SCM, but they are modified by
the EnKF, we need to specify a rule for their evolution in time. Keeping them constant after
assimilation is not correct, but immediately overwriting them with the original values based on
the large-scale model is also not correct. It was decided o relax them slowly fowards the original

values: du (1) )
o = — (ug (1) —uy(1))

T
'ng

where a time-scale of 7,, = 1 hour has been used. This is a model parameter that deserves
better tuning in future expenmen’rs

As benchmark to compare the results with, we also performed a reference model run of a single-
column model without data assimilation.

Figure 7 shows an overview of one run with data assimilation. The ensemble members, created
as described above, are shown as the 10 light-blue lines. They can be seen to reflect different
wind conditions that were forecasted in the 3 hours after 9.30UTC. It is good to recall that the
spread between these ensemble members determines how much the EnKF adjusts the wind
profiles to the observed ones: the more spread, the more weight is assigned to the observations.

Shortly affer the assimilation step, the wind speed and the temperature are closer to the ob-
servations. After two more hours, the wind speed is very close again to the reference forecast
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Figure 8 Mean absolute error averaged and root mean square over 365 runs in the year 2018 as a function
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Figure 9 Relative mean absolute error and root mean square error of the run with data assimilation com-
pared to the run without data assimilation for different heights and lead times.

without data assimilation. This is likely the result of the relaxation of the driving u,, v, components
that has been described above.

To get statistically more meaningful results, we repeated the experiment described above for
all days in the year 2018 and the compiled error statistics for this period. Figure 8 shows the
mean absolute error and root mean square error of wind speed (averaged over all heights) as
a function of lead time in the left panel. It is clear that the assimilation step reduces the forecast
error for the first hours. The dependence of the forecast error on height is shown in the right panel
of Figure 8. The near-surface winds have the highest errors, this is most likely due to the simple
representation of the surface in the single column model. The reduction of MAE and RMSE by
the data assimilation is present for all heights, but the relative reduction is largest for higher air
layers.

We also computed the relative MAE and relative RMSE of the runs with data assimilation w.r.t the
runs without data assimilation. Figure 9 shows that the reduction of the errors for most heights is
around 25% and then decreases to roughly 5%-10% after two hours. It can also be observed that
the relative reduction in MAE and RMSE is lowest for the 10m winds.
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Figure 10 Vertical profiles of relative humidity as observed and modeled by LES. Top left: original LES run
without data assimilation, driven by ERAS tendencies. Top right: LES run with initial conditions from tower
measurements. Bottom left: using fower measurements and a dryer soil. Bottom right: Tower observations
(only until 200m).

IV.3 Initialisation of LES fields with ftower measurements

A third case presented in this study is relevant for solar energy rather than for wind energy pur-
poses. It was performed with the full physics LES model that Whiffle employs for operational
forecasting in the context of the research described in Van Soest (2023). Furthermore, it differs
from the previous cases because the data assimilation was performed in a heuristic way by sim-
ply changing the initial profiles of the LES using the observed values and leaving values higher
than the tower height unchanged. In principle, the same data-assimilation strategy based on
EnKF could be used here as well, but this is left for future work. Observations of wind speed,
temperature and specific humidity taken at 22UTC the day before have been used to inifialize
the LES. The case that was run features the formation of nocturnal radiation fog as described by
Maronga and Bosveld (2017).

Figure 10 shows the evolution of the fog layer as modeled and observed. The original LES run
in the top left panel used ERAS boundary conditions, but did not use any tower measurements.
The fog layer is already present in this run, but it is more shallow than the observations. The
top right panel shows the LES results when the tower measurements at 22UTC were used to
initialize the model. This was done by setting the horizontal averages of the LES run to the tower
measurements and interpolating between the tower measurement heights.

Using the tower observations as initial conditions clearly leads to a deeper and more persistent
fog layer that matches the observations better. The sensitivity of the fog layer to soil moisture
content was tested by altering the soil conditions, but the results do not change much for a
dryer soil (bottom left panel).

The obtained results are of practical relevance in the light of solar power forecasting. The mo-
ment of dissipation of nocturnal fog layers has a large influence on solar power output and is
notoriously difficult to forecast, see e.g. Boutle et al. (2018) and Maronga and Bosveld (2017).
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Using an observation from 22UTC to improve the forecast of the moment of dissipation of the fog
layer the next day is operationally possible and has a large practical relevance.
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HEADNODE

Figure 11 Diagram illustrating scalability of EnKF approach with LES models. Each LES model is run on a
separate GPU node in a cloud environment. Model states x; are sent fo the headnode, which performs
the EnKF and broadcasts the Kalman gains K back fo the nodes.

V. Discussion and outlook for data assimilation in LES
forecasfting

The ultimate goal of this research is to assimilate different types of atmospheric measurements in
local LES based weather models used for renewable energy forecasting. For wind energy, mea-
surements of wind speed and power from wind turbine sensors, scanning LIDARSs, profiling LIDARS
as well as more traditional sources like met-masts, radio-soundings and automatic weather sta-
tions can be used. For solar energy, in addition to the tfraditional measurements (satellite, tower
measurements, weather stations), one could use observations from all-sky camera’s, pyranome-
ters and solar panels themselves. As shown in this research, EnKFs have some attractive prop-
erties for non-linear models: they are conceptually simple and have modest computational
requirements. The non-linear observation operator provides a lot of flexibility to represent the
various types of atmospheric measurements described above.

A large difference between an operational LES model and the single-column model used in this
research is the amount of grid points and thus state-variables. In the simulations with the single
column model, only 128 vertical points were used for three state variables. More realistic LES
sizes are 256 x 256 x 128 grid points and have 6 state variables (horizontal winds « andv, vertical
velocity w, temperature 0, specific humidity ¢; and pressure p) amounting o approximately 50
million degrees of freedom. More research is needed to get insights in a good EnKF design in
such cases. As a first step, this could be done with the aim to estimate the mean wind profiles
and geostrophic forcings, very similar to the set-up of this research and essentially treating the
LES as a single-column model. Furthermore, localisation is a technique that is offen used when
EnKF are employed in large geoscientific models Houtekamer and Zhang (2016).

Another attractive feature for operational data assimilation with ENKF is that it is straight-forward
to parallelize the ensemble member integrations over different nodes. Since Whiffle runs its oper-
ational LES model on graphics processing units (GPUs), the nodes can be separate GPU nodes in
a cloud computing environment. Figure 11 illustrates this schematically. It requires only a limited
amount of data-transfer between the headnode that performs the EnKF algorithm and the GPU
nodes.

Since short-term RES forecasts are nowadays mostly produced with techniques like VARX, it
would be useful to compare LES runs with DA against such a benchmark. Using local and re-
cent observations are always expected to benefit a forecast; the question is if there is significant
benefit in using data assimilation or one can resort to simpler methods.
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VI. Conclusions and recommendations

This report describes a set of data assimilation experiments carried out with a single-column
atmospheric model and measurements from the Cabauw tower. It should be regarded a proof-
of-concept study to test concepts that can later be implemented in an operational LES based
forecast model.

The Ensemble Kalman Filter (EnKF) has been used as the algorithm for data assimilation. The
results demonstrate the feasibility of this approach. In a proof-of-concept with a stylized at-
mospheric boundary layer, the EnKF algorithm led to a correct adjustment of the atmospheric
variables to the profiles of the simulation from which ‘'measurements’” were sampled.

In a more realistic setting, significant improvements in the short-term forecast were observed:
from 30% right after the assimilation step to roughly 5% after two hours. The sensitivity of the
forecast improvements for several ENKF design choices has, however, not been systematically
assessed in this research.

A third case showed how tower measurements can be used to directly initialize the LES state
variables in a case that features the formation of nocturnal fog. The forecasted evolution of the
fog layer improved markedly by using these observations. This is a promising results in the light of
solar power forecasting, for which the break-up of fog layers remains a critical issue.

Although the work presented here may be considered a succesful proof-of-concept, the even-
tual goal is to assimilate observations in an operational LES model. A number of recommendo-
tions for future research to achieve this goal are formulated next.

VI.1 Recommendations for further research

In parallel to implementing the ENKF in the LES model, more experimentation with the SCM model
is deemed a useful next step. In particular, we recommend to systematically study the EnKF filter
design by tfesting different methods to specify the process and observation covarionce matri-
ces Q and R and relaxation time-scales. Such settings may also be specific for the quality and
quantity of the available observations. Data-denial experiments, in which, for example, part of
the Cabauw tower observations are withheld, could provide useful insights for operational fore-
casting. After all, the availability of tall tower measurements in the close proximity of wind farms
is highly unlikely. Nevertheless, it could be that further experiments provide more insights in the
added value and commercial viability of such measurements, or possibly cheaper alternatives
like profiling LIDARs or drones.

A second line of future work should focus on the implementation of a data assimilation algorithm
in the operational LES model. As a first step, this can be done in a setting similar to the one used
in this study: by treating the LES as a single column model and only trying to adjust horizontal
mean profiles. A promising next step is to include SCADA wind farm observations in this setting.
Because wind turbines can be modeled directly in the LES, it is straightforward to model an
observation operator that mimics the SCADA observations. With respect to solar forecasting,
more research into the value of observations for predicting fog layers or stratocumulus clouds is
recommended.

More challenging but also more promising is the assimilation of data in large-domain and het-
erogeneous LES runs. In such a setting, there is no longer a prescribed geostrophic forcing, but
pressures and velocities are directly prescribed at the boundary values of the LES. In these set-
tings. the inclusions of satellite or ground-based sky images becomes possible. As discussed in
the previous section, data assimilation in large LES models likely brings a range of additional com-
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putational challenges, for example with respect to the amount of ensemble members needed.
The long experience of several operational weather models with a variety of data assimilation
methods will provide inspiration to tackle the future challenges.
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