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Digitalization and energy data

▪ Digitalization is a key component of the 
energy transition:

▪ Data is the raw material

▪ Value is generated through analytics

▪ Energy data is naturally distributed

▪ geographically, but also…

▪ In terms of ownership

▪ Most often, those who collect and own
data are reluctant to share!
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The million-dollar question…

HOW DO WE GET AGENTS OF THE ENERGY 
SYSTEM TO SHARE THEIR DATA?

▪ Force every body to share their data with a central entity?

▪ Impose that all data is open-access?

▪ Etc.

▪ Unfortunately, there may not be a single approach that would work for 
all types of problems and agents involved!

▪ Smart4RES is the first EU project to propose new business models (as 
well as necessary technical solutions) for energy data sharing
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New business models for data sharing

Smart4RES investigates 4 
alternative and complementary 
approaches: 

▪ Collaborative analytics (link to 
presentation by Carla 
Goncalves) 

▪ Data markets

▪ Analytics markets

▪ Prediction markets

Their relevance depends upon 
the problem at hand and agents 
involved.

All approach may accommodate 
a privacy-preserving layer!
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Regression markets (1): the regression problem

▪ Is that possible to monetize data within a regression framework?
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Consider a 
central agent 
(“Forecaster”), 
with a 
regression 
problem as a 
basis to predict 
renewable 
energy 
generation at a 
given site 
(𝑦𝑡+𝑘), and with 
own features 
𝜔 = {𝑥1, … , 𝑥𝑚}

▪ The following regression problem can be used as a basis for learning, and 
eventually forecasting:

𝒀𝑡+𝑘= 𝛽0 + σ𝑖=1
𝑚 𝛽𝑖 𝑥𝑖,𝑡 + 𝜀𝑡 , 𝑡 = 1,… , 𝑇

▪ The vector of parameters 𝜷 = [𝛽0, … , 𝛽𝑚]
T can be estimated as

෡𝜷 = argmin 𝑆𝜔(𝜷), 𝑆𝜔(𝜷) = 
1

𝑇
σ𝑡=1
𝑇 𝜌 𝑦𝑡+𝑘 − (𝛽0+ σ𝑖=1

𝑚 𝛽𝑖 𝑥𝑖,𝑡)

where 𝜌 is any convex loss function (e.g., quadratic, pinball loss, etc.)

▪ Based on the data available, the minimum loss function value is  𝑆𝜔
∗ = 𝑆𝜔 (෡𝜷)



Regression markets (2): regression market task
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Forecaster post 
a regression 
task on a 
platform and 
declares a 
willingness to 
pay 𝜙 = 1€ per 
percent 
improvement in 
S and per data 
point

▪ Two support agents (“Good data” and “Useful features”) bring their features 𝑧1
and 𝑧2 to the platform…

▪ The overall set of features is now Ω = 𝜔 ∪ {𝑧1, 𝑧2}

▪ The regression problem can be augmented as 

𝒀𝑡+𝑘= 𝛽0 + σ𝑖=1
𝑚 𝛽𝑖 𝑥𝑖,𝑡 + 𝛾1𝑧1,𝑡 + 𝛾2𝑧2,𝑡 + 𝜀𝑡 , 𝑡 = 1,… , 𝑇

▪ The augmented vector of parameters 𝜷+ = [𝛽0, … , 𝛽𝑚, 𝛾1, 𝛾2]
T can be estimated 

as

෡𝜷+ = argmin 𝑆Ω(𝜷
+) 

𝑆Ω(𝜷
+) = 

1

𝑇
σ𝑡=1
𝑇 𝜌 𝑦𝑡+𝑘 − (𝛽0+ σ𝑖=1

𝑚 𝛽𝑖 𝑥𝑖,𝑡 + 𝛾1𝑧1,𝑡 + 𝛾2𝑧2,𝑡)

▪ Based on the data available, the minimum loss function value is 𝑆Ω
∗ = 𝑆Ω (෡𝜷

+)



Regression markets (3): payments and revenues

▪ How to define the payment of the central agent and revenues for the support agents?
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If the features 
are valuable, 
the loss 𝑆Ω

∗

when using the 
features of 
support agents 
should be lower 
than 𝑆𝜔

∗ . The 
overall value 
generated by 
the mechanism 
is 𝑆𝜔

∗ - 𝑆Ω
∗

▪ The central agent (“Forecaster”) expressed a willingness to pay per unit 
improvement of the loss function, and per data point…

▪ Hence, the payment should be:

𝜋𝑐 = (𝑆𝜔
∗ − 𝑆Ω

∗ ) 𝑇 𝜙

▪ And, for the support agents (“Good data” and “Useful features”), they should fairly 
share that payment…

▪ Their revenue is then defined as

𝜋𝑖 = (𝑆𝜔
∗ − 𝑆Ω

∗ ) 𝑇 𝜙 𝜓𝑖 = 𝜋𝑐 𝜓𝑖 , 𝑖 = 1,2

where 𝜓𝑖 is an allocation policy based on feature valuation (as commonly used in XAI 
these days, e.g. using Shapley values)



Illustrative application example

▪ Case study in South Carolina:

▪ 9 wind farms within 150km 
radius

▪ 7 years of hourly data

▪ 1-step ahead forecasts

▪ Quantiles with nominal level
o.55

▪ AR models with 2 lags for the 
central agent and 1 lag for 
support agents

▪ Willingness to pay:

▪ 0.2$ per data point per unit 
decrease in loss function in 
sample

▪ 0.8$ per data point per unit 
decrease in loss function out of 
sample
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Out-of-sample results

▪ Agents receive a payment as a function of 
how much their their data allowed others 
to improve their 1-step ahead quantile 
forecasts

▪ Not all data is valuable

▪ One can deduce the value of single data 
points for each agent, e.g.

▪ a4 gets 0.39$ per data point

▪ a8 gets 3.26$ per data point
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Multiple sellers, multiple buyers

▪ One can organize a data market where features are allocated and priced following a social welfare 
maximization approach (as in electricity markets)
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S1

Sellers Buyers

Bi

Market Operator

data & min price & value function 

payment

S2

S3

payment

payment

forecasts

payment

Data allocation and prices

according to

max buyers’ value (error) – sellers’ 

value (discomfort with data sharing) 

data & min price & value function 

data & min price & value function 

data  & max price & value function 

such that

Buyer i pays up to max price
Seller j receives at least min price



Prototype of a data market: Predico

▪ INESC TEC developed a prototype of a data market platform
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Smart Meters:
✓ Power Consumption
✓ Power Generation

Local weather stations:
✓ Weather 

Measurements

Timeseries

Data

Marketplace

Data 

Owners

Business
(customers)
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Collaborative
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Collaborative

Forecasting
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❑ Data owners share data and receive financial incentives provided by interested customers

❑ Subproducts created from data owners' information (e.g., collaborative forecasts), increasing its 
value and opening new use cases for data sharing



KEY TAKE-AWAY MESSAGES
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SOLUTION: Data markets allow to bring the necessary incentives, while also defining new 
revenues streams for the agents of digitalized energy systems  

Towards Data Markets – Pierre Pinson (Imperial College London & DTU)

PROBLEM: There is was no established framework to support and incentivize data sharing 
within energy system operation

POTENTIAL: We foresee that data markets, analytics platforms, etc., will play a major role 
in unleashing the value of distributed energy data, and eventually in the 
management of distributed energy resources



FURTHER READING

▪ Public deliverables (EU project Smart4RES)

▪ D4.2 - Data marketplace for RES forecasting

▪ D4.3 - Novel business models for data sharing

▪ Publications (selection)
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p.pinson@imperial.ac.uk
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• Jalal Kazempour, DTU: 
jalal@dtu.dk
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for energy forecasting 



OUTLINE

1. Context

2. Collaborative forecasting model for 6h-ahead

3. Privacy-preserving protocol

4. Extension for 2 days-ahead forecasting

5. Conclusions and key take aways
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CONTEXT

▪ Combining data from multiple companies may lead to an improvement of forecasting skill 

▪ due to spatio-temporal dependencies in geographically distributed time series

21

Increasing volume of geographically distributed data

Main Barriers

Data privacy and confidentiality

Lack of monetary and non-monetary incentives for sharing data

1

2

3

Privacy-preserving data sharing for energy forecasting 

hour

power



RES COLLABORATIVE FORECASTING
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1

Y1,tY1,t-1Y1,t-2
…

2

Y2,tY2,t-1Y2,t-2

3

Y3,tY3,t-1Y3,t-2
…

Example: 3 PV sites, 1 lag

multivariate linear model

power forecasts for multiple sites as a function of
past power observations from all sites

Vector Autoregressive 
Model (VAR)

VAR MODEL

𝑌2,𝑡 = 𝑐2 +𝐵1,2
1 𝑌1,𝑡−1 + 𝐵

2,2
1 𝑌2,𝑡−1 +𝐵3,2

1 𝑌3,𝑡−1 + 𝐸2,𝑡

𝑌1,𝑡 = 𝑐1 +𝐵1,1
1 𝑌1,𝑡−1 + 𝐵

2,1
1 𝑌2,𝑡−1 + 𝐵

3,1
1 𝑌3,𝑡−1 + 𝐸1,𝑡

These connections are a problem!

When compared against
AR, VAR has reduced the

average error by ~10% 
(h=1)

Privacy-preserving data sharing for energy forecasting 

𝑌3,𝑡 = 𝑐1 +𝐵1,3
1 𝑌1,𝑡−1 + 𝐵

2,3
1 𝑌2,𝑡−1 + 𝐵

3,3
1 𝑌3,𝑡−1 + 𝐸3,𝑡
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RES COLLABORATIVE FORECASTING

Distributed coefficients estimation

= B2=

෣𝐶𝑜𝑒𝑓 𝑃𝑉1
𝑘+1 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

෣𝐶𝑜𝑒𝑓 𝑃𝑉2
𝑘+1 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

෣𝐶𝑜𝑒𝑓 𝑃𝑉3
𝑘+1 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
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C. Gonçalves, R.J. Bessa, P. Pinson, “A critical overview of privacy-preserving 
approaches for collaborative forecasting,” International Journal of Forecasting, vol. 
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TRADITIONAL APPROACH

Privacy-preserving data sharing for energy forecasting 
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RES COLLABORATIVE FORECASTING
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Privacy-preserving data sharing for energy forecasting 
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RES COLLABORATIVE FORECASTING

(2) Coefficients encryption with linear algebra (Q: random 
matrix – own by each agent)   

Q1

Private matrix for encrypting
coefficients from PV1

M1 M2 M3. . . . Q2

Private matrix for encrypting
coefficients from PV2

Q3

Private matrix for encrypting
coefficients from PV3Private matrices

PROPOSAL: PRIVACY-PRESERVING PROTOCOL

Privacy-preserving data sharing for energy forecasting 
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RES COLLABORATIVE FORECASTING
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(3) Distributed computation of coefficients

Distributed 

computation

PROPOSAL: PRIVACY-PRESERVING PROTOCOL

Privacy-preserving data sharing for energy forecasting 
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RES COLLABORATIVE FORECASTING
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Agents (RES Producers)

Central node (hub)

Centralized Model Peer-to-Peer Model

21

3

21

3

(3) Distributed computation of coefficients
Formulation flexible enough to allow
centralized and peer-to-peer model’s
estimation

Distributed 

computation

PROPOSAL: PRIVACY-PRESERVING PROTOCOL

Privacy-preserving data sharing for energy forecasting 
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(4) Obtain original coefficients with Q matrix (same 
coefficients with privacy protocol) 

PROPOSAL: PRIVACY-PRESERVING PROTOCOL

Privacy-preserving data sharing for energy forecasting 
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CASE-STUDIES

Privacy-preserving data sharing for energy forecasting 

Wind power dataset (10 wind farms
located in Australia)

Solar power dataset (44 micro 
generation units located in Portugal)

▪ Jan2012 – Nov2013
▪ 6 most recent power values
▪ Sliding window 1 month test/12 months train

▪ Fev2011 – Mar2013
▪ 2 most recent power values + 24h lag
▪ Sliding window 1 month test/12 months train

Median
(5 wind farms improved at least 5%)

Maximum

Minimum

✓ Data is protected 
without changing 
the model accuracy

✓ For each horizon 
more than 70% of 
the power plants 
improved their 
forecasts

COMPARISON WITH AN AUTOREGRESSIVE MODEL (MODEL CONSIDERING ONLY OWN LAGS )

✓ Improvement 
depends on spatial 
distribution of the 
power plants
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Vector Autoregressive 
Model (VAR)

Privacy-preserving data sharing for energy forecasting 

Inclusion of weather forecasts is essential for larger forecasting horizons

Effective up to 6h-ahead

𝑌2,𝑡 ≈ 𝑐2 +𝐵1,2
1 𝑌1,𝑡−1 + 𝐵

2,2
1 𝑌2,𝑡−1 +𝐵3,2

1 𝑌3,𝑡−1 + 𝐵
1,2
𝐺𝐻𝐼 ෢𝐺𝐻𝐼1,𝑡+𝐵2,2

𝐺𝐻𝐼 ෢𝐺𝐻𝐼2,𝑡 +𝐵3,2
𝐺𝐻𝐼 ෢𝐺𝐻𝐼3,𝑡

𝑌1,𝑡 ≈ 𝑐1 +𝐵1,1
1 𝑌1,𝑡−1 + 𝐵

2,1
1 𝑌2,𝑡−1 + 𝐵

3,1
1 𝑌3,𝑡−1 + 𝐵

1,1
𝐺𝐻𝐼 ෢𝐺𝐻𝐼1,𝑡+𝐵2,1

𝐺𝐻𝐼 ෢𝐺𝐻𝐼2,𝑡 +𝐵3,1
𝐺𝐻𝐼 ෢𝐺𝐻𝐼3,𝑡

𝑌3,𝑡 ≈ 𝑐1 +𝐵1,3
1 𝑌1,𝑡−1 + 𝐵

2,3
1 𝑌2,𝑡−1 + 𝐵

3,3
1 𝑌3,𝑡−1 + 𝐵

1,3
𝐺𝐻𝐼 ෢𝐺𝐻𝐼1,𝑡+𝐵2,3

𝐺𝐻𝐼 ෢𝐺𝐻𝐼2,𝑡 +𝐵3,3
𝐺𝐻𝐼 ෢𝐺𝐻𝐼3,𝑡

Global Horizontal Irradiance (GHI)

Easy solution: add weather forecasts to the model

Non-linear relation between power and weather variables!

1

2

3
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1

2

3

f1( ෢𝐺𝐻𝐼1,𝑡)

෢𝐺𝐻𝐼1,𝑡

f2( ෢𝐺𝐻𝐼1,𝑡)

f3( ෢𝐺𝐻𝐼1,𝑡)

f4( ෢𝐺𝐻𝐼1,𝑡)

f5( ෢𝐺𝐻𝐼1,𝑡)

PROPOSAL

Vector Autoregressive 
Model (VAR)
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2,2
1 𝑌2,𝑡−1 +𝐵3,2
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extension with additive models (natural cubic 
splines) to capture non-linearities

෢𝐺𝐻𝐼

f1

f2

f3

f4

f5

Example of
natural cubic
spline functions

f1( ෢𝐺𝐻𝐼2,𝑡)

෢𝐺𝐻𝐼2,𝑡

f2( ෢𝐺𝐻𝐼2,𝑡)

f3( ෢𝐺𝐻𝐼2,𝑡)

f4( ෢𝐺𝐻𝐼2,𝑡)
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f1( ෢𝐺𝐻𝐼3,𝑡)

෢𝐺𝐻𝐼3,𝑡

f2( ෢𝐺𝐻𝐼3,𝑡)

f3( ෢𝐺𝐻𝐼3,𝑡)

f4( ෢𝐺𝐻𝐼3,𝑡)

f5( ෢𝐺𝐻𝐼3,𝑡)

Global Horizontal Irradiance (GHI)
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CASE-STUDY

Privacy-preserving data sharing for energy forecasting 

Wind power dataset (60 wind turbines located in France)

▪ Oct2018 – Sept2020 (15mins resolution)
▪ Sliding window 1 month test/12 month train

✓ Data is protected 
without changing 
the model accuracy

COMPARISON WITH AN ADDITIVE MODEL CONSIDERING ONLY LOCAL DATA

1 day-ahead (day D+1) 2days-ahead (day D+2)

u and v forecasts up to 48h ahead (generated at 0h00 of day D)

INPUTS 4h lags

u and v forecasts up to 48h ahead (generated at 0h00 of day D+1)

✓ In general, more 
than 50% of the 
wind turbines 
benefit when using 
the collaborative 
model
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CASE-STUDY

Privacy-preserving data sharing for energy forecasting 

Wind power dataset (60 wind turbines located in France)

✓ Data is protected 
without changing 
the model accuracy

✓Competitive
accuracy when
compared with a 
non-linear 
collaborative model

COMPARISON WITH GRADIENT BOOSTING TREES (NON-LINEAR MODEL WITHOUT DATA PRIVACY!)

1 day-ahead (day D+1) 2days-ahead (day D+2)

u and v forecasts up to 48h ahead (generated at 0h00 of day D)

INPUTS 4h lags

u and v forecasts up to 48h ahead (generated at 0h00 of day D+1)

▪ Oct2018 – Sept2020 (15mins resolution)
▪ Sliding window 1 month test/12 month train



KEY TAKE AWAYS
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▪ Combining data may improve forecasting accuracy

▪ Data privacy is a requirement for companies to 
cooperate

▪ Existing methods have limitations when applied to 
spatio-temporal time series data

▪ A protocol was proposed to encrypt data such 
that, when using a linear model:

▪ original relation between data is not affected

▪ computation of the model’s coefficients may be 
performed in a centralized or peer-to-peer way

▪ Extension to capture non-linear relations is 
possible with additive models (splines)

▪ Future work: explore other non-linear models and 
online estimation

Privacy-preserving data sharing for energy forecasting 



FURTHER READING

▪ Public deliverables (D4.1)

▪ https://www.smart4res.eu/wp-content/uploads/2023/01/Smart4RES_D4.1.pdf

▪ Publications

1. C. Gonçalves, R. J. Bessa, and P. Pinson. "A critical overview of privacy-
preserving approaches for collaborative forecasting." International journal of
Forecasting 37.1 (2021): 322-342.

2. C. Goncalves, R. J. Bessa, and P. Pinson. "Privacy-preserving distributed
learning for renewable energy forecasting." IEEE Transactions on Sustainable
Energy 12.3 (2021): 1777-1787.

35Privacy-preserving data sharing for energy forecasting 
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OUTLINE

1. Context and motivation

2. Framework and buildings blocks

3. Numerical results

4. Conclusions and key takeaways
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CONTEXT
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Bessa et al., Uncertainty-aware booking of flexibilities in 

electrical grids

Increasing RES integration across all voltage levels

Long-term and short-term flexibility markets are emerging in EU

Need to revisit the traditional power system operating processes & software

Decide procurement and activation of grid and DER 
flexibility under forecast uncertainty to solve 
technical problems (voltage / congestion) 

USE CASE



MOTIVATION
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electrical grids

Uncertainty forecasts for all grid 
points and with multiple spatial-

temporal trajectories

New tools for 
flexibility 

procurement and 
activation under 

uncertainty 

Procure and “reserve” 
flexibility in the short-term 

flexibility resources

Too much 
information!

No more 
new tools 
please?!

When to decide? How 
to rank the different 
flexibility options?

!

Smart4RES GOALS
❑ Provide information about cause and effect → “interpretability”
❑ Multi-criteria & iterative process
❑ Formulate a time-to-decide problem: operator decides if “reserve” 

flexibility now OR wait for the next forecast update



FRAMEWORK FOR RISK-AWARE FLEXIBILTY PROCUREMENT
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electrical grids

Full Electrical 

Grid

Forecast 

Uncertainty for 

Grid Nodes

Identification of 

critical lines / 

bus

Flexibility 

Options

Filter candidate 

flexible options

Flexibility options 

ranking

Risk-cost curves 

with top flexibility 

options

Preferred solutionLarge volume of 

information

Human 

operator 

integration

Information reduction  to remove cognitive load of human operators

Technical problems with a prob > 

threshold trigger the next steps



BUILDING BLOCKS: SCENARIOS & SENSITIVITIES
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electrical grids

Spatial scenarios generated with 
a Gaussian copula and marginal 
probability distributions

For each scenario compute 
sensitivity indices relating

P, Q ~ Branch current (1)

P, Q ~ Node voltages (1)

NTW reconfiguration ~ Branch 
current (Z-bus + graph theory)

(1) Christakou, K., et al. (2013). Efficient computation of sensitivity coefficients of node voltages and line currents in unbalanced radial electrical distribution networks. IEEE Trans. on Smart Grid, 4(2), 741-750

For each flexibility option a set of 
metrics are computed to 
characterize its effectiveness

• Expected flexibility cost
• Probability of congestion / 

voltage problem
• VaR of flexibility cost
• VaR of severity
• Expected severity



BUILDING BLOCKS: FLEXIBILITY RANKING, RISK CURVES
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Flexibility options ranking with TOPSIS(1)

Option 1: Curtail wind park U50

Option 2: Demand response U1

Option n: Redispatch U10, U16

…

Probability of congestion

Option 1: Curtail wind park U50

Option 2: Demand response U1

Option n: Redispatch U10, U16

…

Cost (€)

P
ro

b
a

b
il

it
y

o
f 

co
n

g
es

ti
o

n

Cost (€)

Combine top 3-5 
flexibility options

(1) Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Yoon, K. (1987). “A reconciliation among discrete compromise situations”. J. of the Op. Res. Soc. 38: 277–286.



USE OF META-FORECASTS
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Forecast for t+30|t 

(NWP @ 00h00)

Forecast for t+18|t

(NWP @ 12h00)
Forecast for t+2|t

(NWP @ 12h00 + past 

observations)

Delivery hour

At decision time t generates

❑ Forecast for t+30|t 

❑ Meta-forecast for t+30|t+12 

❑ Meta-forecast for t+30|t+28 

R
is

k

Cost

selected max risk-level 

by human operator

Stakes

M
a

x
 R

is
k

time

flexibility price

uncertainty

in theory…

delivery time

Probability of a congestion forecasted with NWP for day D+1 (lead time: t+30)
> Decide now ( “reserve” a flexibility option) or wait for next forecast?



META-FORECASTING MODEL
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Gradient Boosting Trees (GBT)

Forecasted generated 

with 00h00 NWP

+

Features characterizing 

level uncertainty (IQR, 

forecasted quantiles, 

stdev.) ED-ANN

baseline model: forecast does not change

❑ MAE improvement (meta-forecast with NWP @ 
12h00) between  13% and 26%

❑ MAE improvement (meta-forecast for t+2|t) between  
16% and 31%



CASE-STUDY
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electrical grids

❑Modified Oberrhein MV network

❑Load time series: Measurements from Iowa Distribution Test Systems(1)

❑RES time series: French dataset (Smart4RES) + ECMWF NWP data

❑Rated power of wind power plants and consumption values adjusted to 
create technical problems in 1-year of data

❑Only wind power forecast uncertainty is used (perfect forecasts for load)

❑Flexibility prices computed considered CAPEX and OPEX of resources



EVALUATION METRICS
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𝐹𝛽 = 1 + 𝛽2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Confusion matrix Cost-loss matrix

𝛾 = 𝐶 + 𝐿 ∙ ℎ + 𝐶 ∙ 𝑚 + 𝐿 ∙ 𝑓 + 0 ∙ 𝑐

Congestion occurred Congestion did not  occur

Action taken
Rate of occurrence in % (h)

Flex cost (C) + Loss (L)

Rate of occurrence in % (m)

Flex cost (C) 

Action not 

taken

Rate of occurrence in % (f)

Loss (L)

Rate of occurrence in % (c)

No cost

Congestion occurred
Congestion did not  

occur

Congestion detected TP FP

Congestion not 

detected
FN TN

M
etric

M
etric



EXAMPLE: SOLVE A LINE CONGESTION
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electrical grids

Forecast and meta-forecast launched at 00h00 for t+42|t

Wait for the 

next 

forecast 

update

Forecast and meta-forecast launched at 12h00

Wait for the next 

forecast update

Forecast launched for t+2|t

No congestion (no need for flexibility)

Saved flexibility cost!



OVERRAL RESULTS
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KEY RESULTS

❑ Time-to-decide (T2D) approach outperforms deterministic 
strategies
▪ e.g., F3-score 0.85 (T2D) vs 0.37 (deterministic)

❑ T2D outperforms a decision-now strategy (operator decides to 
reserve flexibility at the lowest availability cost) 
▪ Improves in 30% the cost-loss matrix performance metric (𝛾) 

Profiles of different decision/makers

❑ Different decision-maker profiles lead to distinct results
❑ e.g., F3-score 0.85 (DM A) vs 0.77 (DM C)
❑ DM D has a cost-loss matrix performance metric (𝛾) 

20% lower than DM A



KEY TAKE AWAYS
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Main contribution
Methodology to guide the human operator along 1) the different flexibility options available in each hour, ranking 
them according to their effectiveness under uncertainty, and 2) multiple forecasts updates

Key results
❑ Uncertainty forecasts can lead to cost savings when solving technical problems
❑ Choosing the best moment to reserve flexibility also leads to cost savings

Avenues of future research
❑ Include the look-ahead impact of activating flexibility 
❑ New metrics to evaluate decision quality under uncertainty
❑ Meta-forecasting has room for further improvement & application to other use cases
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Optimization of operation and security 
assessment of isolated power systems with high 

RES penetration



OUTLINE

1. Non-Interconnected islands operating in high RES penetration

2. Dynamic Security Assessment

3. Secure Economic Dispatch considering central Battery Energy 
Storage Services

4. Key take aways

53Optimization of operation and security assessment of isolated power systems with high RES penetration



Greek non-interconnected islands
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➢ Host 15% of the Greek population and account for 
almost 14% of the total national annual electricity 
consumption.

➢ High seasonal variability in load demand.

➢ Supplied by autonomous power stations with diesel 
Generators (High Operational Costs)

➢ Restricted Penetration of RES for operational 
security.

0,0
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350,0

400,0
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W
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Weighted Variable Cost of Island (€/MWh)

Interconnected System Marginal Price (€/MWh)

Data based in 2017

Utilization of battery storage technologies and smart grid 
applications to:

• Increase RES penetration.

• Improve Security of Power Supply under higher 
RES penetration levels

Optimization of operation and security assessment of isolated power systems with high RES penetration



Dynamic Security Assessment
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Economic 
Dispatch

Economic 
Dispatch

Dynamic Security 
Assessment

t

➢ Module in Energy Management Systems. Run on smaller intervals than economic dispatch.

➢ Goal: Estimate accurately if the existing operating condition is secure or insecure 

➢ Algorithm:

▪ Get system state (e.g. generator active/reactive power, load active/reactive power) every x minutes 

▪ Check if system is secure:

o Run power flows/dynamic simulations and check if security thresholds are exceeded (e.g. in line loading, voltage 
levels, frequency nadirs or Rate of Change of Frequency) - typical approach

o Use data driven classifiers - modern approach (avoid high computational burden of running  many simulations)

➢ Action: If insecure state computed, further security constraints are added in the economic dispatch to result in secure state (e.g. 
by curtailing RES, committing extra generators, requesting higher reserve levels, etc.)



Dynamic Security Assessment in Islands
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➢ Frequency Security is the goal in island’s dynamic security 
assessment methods. How?

❖ Dynamic threshold on RES penetration (e.g. 20-30%).

❖ Thermal units Reserves to match N-1 criterion and certain 
variation in RES output.

Rules based on operator’s experience. Can be conservative or insecure at 
certain conditions (no direct link to frequency dynamics).

➢ Data Driven security rules trained with Optimal Classification 
Trees (OCTs) on a detailed dynamic model. Validated on 
physical equations to provide guarantees to the system 
operator

OCTs
Train

DD evaluation
Evaluation 

(simplified frequency 
equations)

Security 
Rules

Counter
Examples

Final
Security Rules

Probabilistic 
Forecasts

Optimization 
Based  
DSA

𝑞10, 𝑞50, 𝑞90
Security 

Flag

Optimization of operation and security assessment of isolated power systems with high RES penetration

Proposed Practice in Smart4RES 

➢ Formulation of optimization based assessment that uses short term 
forecasts to find if possible states in near future are uncertain.

Current Practice

➢ Operation of Dynamic Security Assessment. 

❖ Read from SCADA the production of generators and check RES 
penetration and thermal units production.

❖ Execution again n minutes (e.g. 5 or 15).

System state changes from a until next execution due to RES, demand variation. 
What if it leads to insecure state ?



Test Case – Rhodes Living Lab

Dynamic Security 

Assessment Module

Optimization of operation and security assessment of isolated power systems with high RES penetration

Local

DB

Short Term Probabilistic  

Forecasts 

Timestamp
Security 

Indication

28-02-2023 
13:46:01

Insecure

28-02-2023 
13:31:01

Secure

Short Term  Forecast Module

System State

Historical Data  

System State

Real Time Digital 

Simulator (Rhodes 

Digital Twin)

Frequency Load 

Shedding Relay 

(Rhodes Settings)

Relay Status 

(as actual security 

indication)

Powerfactory

Rhodes Model
Living LabOffline Model

Rhodes Power System

System 

operator 

SCADA

Modbus 

Client

Security Estimation 

(Secure/Insecure)

System State

Frequency Metrics

(as actual security indication)

• Detailed Model of Dynamics.

• Run offline for recorded data 

for evaluation.

• Can not model precise 

dynamics of industrial 

equipment.

• Detailed Model of Dynamics.

• More precise setup (Actual Industrial 

equipment can be included in the setup)

• Run online for several hours for 

demonstration (updated every minute).

NTUA Dynamic Security Assessment Module



Security Assessment Results

Living Lab PowerFactory

Secure Insecure

Estimated 
Secure 

71.8% 2.83%

Estimated 
Insecure

28.2% 97.17%

Secure Insecure

Estimated 
Secure 

89.5% 0%

Estimated 
Insecure

10.5% 100%

⚫ High Accuracy in Insecure State Detection. Preventive actions can lead to over 95% Load 
Shedding Events Reduction. 

⚫ Comparison with system state as dictated by system operators’ economic dispatch and security module.
⚫ System operator’s Security Module is less conservative with load shedding events considered acceptable.
⚫ Testing period: 15/02/2023 – 31/03/2023

⚫ Forecast/Dynamic security module executed online every 1hour/15minutes.
⚫ Evaluation with powerfactory model (every point) and Living Lab demonstration (total of 6 hours, on different days)

Optimization of operation and security assessment of isolated power systems with high RES penetration



Secure Economic Dispatch on Small Islands with RES 
penetration over 60%

How:

➢ Deterministic forecasts. High Forecast errors
can occur in small island systems.

➢ Consider similar response on Battery Energy
Storage (BES) and Thermal units frequency
containment reserves (FCR).

➢ Impact of Frequency Restoration Reserves by
the BES on its SoC is not considered.

Proposed Secure Economic Dispatch

➢ Probabilistic forecasts.

➢ Constraints extracted by a dynamic model that includes: BES synthetic inertia and fast frequency containment reserves FCR, 
thermal units inertia and FCR.

➢ Impact of Frequency Restoration Reserves on BES SoC included.

At an unbalance  the BES:

• Picks up fast almost all the disturbance. 

• Current limitation can be activated restricting ancillary 
services provision 

Optimization of operation and security assessment of isolated power systems with high RES penetration

Current Practice

Frequency  Transients 
with current limitation 
activated on the BES 
inverter



Test Case – Astypalea Living Lab

Optimization of operation and security assessment of isolated power systems with high RES penetration

System 

operator 

SCADA

Local

DB

Secure Economic Dispatch

Modbus 

Client
Historical Data  

min
𝑥

𝑓(𝑥)

s.t 𝐴𝑥 ≤ 𝐵

Short Term 

Probabilistic  

Forecasts 

Short Term  Forecast Module

System State 

System State 

(per minute)

PHILReal Time Digital 

Simulator (Astypalea

Digital Twin)

PV inverter

BES Grid Forming 

Controller with 

Ancillary Services

Living Lab

Powerfactory

Astypalea Model

Offline Model

Astypalea Power System

Large RES plants (PV, Wind) not 
installed (Data from Rhodes used) 
BES not installed (simulated)

Power Setpoints,

Units Commitment

Relay Status, SoC 
Frequency Metrics,

SoC

Power Setpoints,

Units Commitment

System state

Power Setpoints,

Units Commitment

System state

BES Model

NTUA 



Secure Economic Dispatch Results

⚫ Proposed Secure ED can lead to reduction of possible Load Shedding Events with a total increase of 
0,15% in cost. 

⚫ Comparison between typical and proposed secure economic dispatch.
⚫ Target: Reduce load shedding events due to SoC violation and high RoCoF/Frequency Transients.
⚫ Testing period: 15/02/2023 – 15/03/2023. 
⚫ Additional predefined Critical Timeseries (high RES/ high Demand scenarios e.g. during summer) (4 hours).

⚫ Forecast/economic dispatch executed online every 1h/30min. Real time control every minute to ensure 
tracking of ED commands

⚫ Evaluation with powerfactory model (all points) and Living Lab demonstration.

Optimization of operation and security assessment of isolated power systems with high RES penetration

Typical Proposed
• SoC limits violated at 0.5% of the total testing period.

• SoC limits can be violated by aFRR activation at 7.17% of the total

testing period.

• 120/150 of the predefined critical scenarios in living lab resulted

in load shedding (RoCoF islanding detection relay activation)

• SoC limits violated at 0.17% of the total testing period.

• SoC limits can be violated by aFRR activation at 0.69% of the

total period.

• All predefined critical scenarios in living lab are secure.



KEY TAKE AWAYS
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Living Labs utilizing real time measurements, real time digital twins and hardware equipment 
(using HIL approaches) can help build the trust of system operators in novel smart grid 
applications correlated with dynamic security.

Proposed Smart4RES forecasts and security applications can increase security of operation 
in islands under those conditions.

Non Interconnected Island System Operators apply or consider initiatives (hybrid stations, 
novel smart grid applications) to increase RES penetration.

Optimization of operation and security assessment of isolated power systems with high RES penetration



FURTHER READING

▪ D5.1 Joint dispatch of RES and storage technologies towards a multi-service approach

▪ D5.2 Predictive dispatch of isolated systems to guarantee minimum FCR and system inertia requirements

▪ D 6.2 Combined software and hardware in the loop tests for distribution grids and isolated power
systems with high RES penetration

▪ D. T. Lagos and N. D. Hatziargyriou, "Data-Driven Frequency Dynamic Unit Commitment for Island
Systems With High RES Penetration," in IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4699-
4711, Sept. 2021, doi: 10.1109/TPWRS.2021.3060891.

▪ D. T. Lagos and N. D. Hatziargyriou, " Comparison of Grid Forming and Grid Following control of a
central BES in a island system operating in high RES penetration", in Powertech 2023.
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CONTEXT

67Camal et al., Trading strategies for RES production

Optimize RES trading decisions and storage control (if any) 
on different short-term markets,  considering:
• RES forecasting as input
• Market uncertainties

USE CASE

Evolutions in short-term markets
• Energy: towards single-pricing of imbalances
• Frequency-control AS: ongoing harmonization in Europe 
• Sharp rise in energy prices 

Combined operation of RES, storage assets
• Hybridization and aggregations ease RES penetration
• Ancillary Services (AS) needs expected to grow



MOTIVATION
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Smart4RES GOALS

❑ Develop uncertainty-aware strategies for RES trading and control
❑ Evaluate the impact of forecasting performance on decisions
❑ Identify role played by market variables that are difficult to predict  

Data on RES, storage, markets

Forecast aggregated RES production (1)

Forecast DA/ID energy market quantities 
(prices, imbalances) (3)

Forecast AS market quantities (prices, 
volumes, activation probabilities) (6)

Stochastic optimisation for trading and 
control decisions (1) 

Bids on energy + AS markets

Optimisation of RES Virtual Power plant (VPP) participation in energy + Ancillary Service (AS) markets

VPP-CS

VPP

Storage control (if any)



Optimization Decision

Model

Model

Model

A FORECAST-THEN-OPTIMIZE APPROACH

RES-VPP forecast

69Camal et al., Trading strategies for RES production

Forecasting with 
ML / statistical methods

Stochastic multi-objective trading optimization

Data on markets & RES

NWP, past production

Market prices (past) & 
volumes (past, predicted)

Market conditions may be difficult to predict
→How to hedge against large profit losses ? 

Trade-off between profit 𝜌 and deviation to 
observed production 𝑝𝐸 , controlled by 𝑘



TRADING RES ON THE DAY-AHEAD ENERGY MARKET

Case Study: Wind+PV VPP (49 MW), French Market

70Camal et al., Trading strategies for RES production
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Results
❑ Method limits risk of large profit losses in dual-pricing and single-pricing  
❑ Improvement in mean profit if no or reduced arbitrage
❑ Barriers in predictability (e.g. imbalance prices) limit value for risk-prone trading 

𝑃 = 1 −
ො𝑣 − ො𝑣∗

ො𝑣𝑆𝐴𝐴 − ො𝑣∗

𝑃 Dual Pricing Single Pricing

k=0 62% 6%

k=1 86% 85%

Improvement in mean profit value ෝ𝒗

• Perfect Foresight ( ො𝑣∗)
• Naive Sample Average Approximation ( ො𝑣𝑆𝐴𝐴)

Evaluation of large profit losses 



INTEGRATING STORAGE

Stochastic Optimization + Linear Decision Rules for recourse actions as a function of RES forecast error

Case Study

▪ Previous 49 MW VPP + 25 MW/12MWh storage 

▪ Dual-pricing, k=0.75 

71Camal et al., Trading strategies for RES production
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Results
❑ Profit increases, but payback of storage is long if day-ahead energy only
❑ Method adaptable to RES forecasting updates, but limited to track dynamic control signals

Storage

No storage



TRADING RES-BASED ENERGY + ANCILLARY SERVICES

Provide RES-based energy + reliable AS without storage?

▪ Predict a low quantile (e.g. ≤ 1%) of the expected VPP production (reliability ≥ 99%)

▪ Reserve offer on the AS market (e.g. aFRR) based on this quantile + Energy offer on non-extremal quantiles

72Camal et al., Trading strategies for RES production
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Results
❑ Trade-off between reliability and reserve volume
❑ Without storage, profit increase ~ 4-5 % vs energy only



ENERGY + ANCILLARY SERVICES FROM RES+STORAGE
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Forecasting with 
ML / statistical methods

Stochastic optimization
(trading & control)

Data on RES, markets, storage
Day-ahead: 

Trading / Scheduling
Intraday: 

Model Predictive Control (MPC)

RES Scenarios + Estimation of AS activationRES Scenarios + Price Scenarios 

A sequential trading -> control framework

Economic MPC
Trading & Storage 

schedule optimization

Minimize imbalance costs on energy 
market & anticipate AS activations

Simultaneous trading on Energy + 
AS markets (FCR, aFRR)



A STOCHASTIC TRADING & CONTROL METHOD
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Trading cost Energy + AS Battery degradation cost )+min 𝔼 (

Energy imbalance + 
AS deficits

Battery degradation costmin 𝔼 ( )+Economic MPC

TradingDay-ahead 
RES scenarios 

Intraday
RES scenarios 

Offers

Deterministic Trading & Reference-Tracking MPC

Fewer cycles
Adequate response

to AS request

Proposed method

Mean over 
scenarios



TRADING AND CONTROL WITH ANCILLARY SERVICES
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+15%

-23%

Cost Analysis Impact of RES Forecasting error on objective (trading + degradation)

Case Study

▪ Hybrid system: 26 MW Wind Farm + 1 MW/MWh Storage, Romania

▪ Day-ahead trading of energy + AS (FCR, aFRR)

Results
❑ Economic MPC enables to increase revenue and reduce degradation
❑ Stochastic formulation reduces sensitivity to RES forecasting error



KEY TAKE AWAYS
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Main contribution
Forecast-then-optimize solutions for trading and control of RES + storage under multiple uncertainties 

Key results
❑ Stochastic methods improve profitability of renewable-based energy & frequency control
❑ Decrease in intraday RES forecasting error reduces costs for storage control

Avenues of future research
❑ Value-oriented approach where forecasting models are tuned to improve decision costs
❑ Distributionally Robust Optimization to hedge against highly uncertain variables
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Context

Moving from data to decisions

Optimization DecisionModel

Model

Model
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Challenges

Forecast value

Optimization DecisionModel

Model

Model
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Challenges

Modeling effort, computational speedup

Optimization DecisionModel

Model

Model
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Challenges

Data-management issues

Optimization DecisionModel

Model

Model
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Objectives and Research directions

Goal: Increase value in data-driven decision-making processes via (i) value-
oriented forecasting, (ii) simplification of complex model chains, and (iii) enhanced
resilience.

RD1: Developing integrated forecasting-optimization tools
1 Improve forecast value
2 Reduce number of models
3 Evaluate the impact of data on decisions

RD2: Enhancing resiliency in energy forecasting applications
1 Consistent performance when data are missing operationally
2 Reduce number of models, maintain practicality

Akylas Stratigakos
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Overview of Methodology

Prescriptive analytics problem: minz∈Z Ey[c(z; y|x)]

Data points

Data points

: decisions

features

: uncertainty

: cost function

forecast

: feasible set

Threshold TRUEFALSE

ML & Optimization

Mathematical solverML output
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Proof of concept: RES trading

• Setting: renewable aggregator participates in a day-ahead market, subject to
imbalance penalties

• Hybrid trading strategy: balance between expected trading profit (prescriptive)
and expected forecast accuracy (predictive), given by

min
poffer

E
[
(1− k)(−ρ) + k

∥∥pE − poffer∥∥2
2

]
,

s.t. pmin ≤ poffer ≤ pmax,

where ρ is the profit function, k is a design parameter controls the trade-off.
• k = 0: “0-1” or newsvendor loss (depending on market design)
• k = 1: standard regression loss

Akylas Stratigakos
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Results

Illustrative results for a day-ahead market, single-price balancing mechanism:
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Evaluating Feature Importance

For k = 1:
• Offers the expected production.

For k = 0, optimal trading offer:
• Single-price: offers either 0 or 1, only

market quantities matter.
• Dual-price: offers the optimal

production quantile given expected
market quantities.

Forecasting market quantities is relatively
more important in a single-price setting.

Prescriptive feature importance

Akylas Stratigakos
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Summary

Contributions1:
1 Profit increase: 3.82% (single-price market) and 0.62% (dual-price market).
2 1 model versus 4 forecasting models (renewable production + market quantities).
3 Profit increase associated with each feature.

Other applications:
• Co-optimization of renewable trading and storage operation
• Tailored forecasting problems (e.g., shape forecasting)

1A. Stratigakos, S. Camal, A. Michiorri, and G. Kariniotakis, "Prescriptive Trees for Integrated Forecasting and Optimization
Applied in Trading of Renewable Energy," in IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4696-4708, 2022.

Akylas Stratigakos
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Extensions

Prescriptive trees that learn a piecewise affine policy 2:

• Leaves with affine decision rules
• Hyperplane splits encode domain

knowledge (interpretable)
• Robust optimization to ensure

feasibility
• Application: learning the DC-OPF

solutions

TRUEFALSE

decisions

uncertainty

features

linear decision rules

cost funtion

hyperplane parameters

feasible set

polyhedral uncertainty set

2A. Stratigakos, S. Pineda, J. M. Morales, and G. Kariniotakis. "Interpretable Machine Learning for DC Optimal Power Flow with
Feasibility Guarantees." (2023).
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Context and Motivation

Optimization DecisionModel

Model

Model
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Context and Motivation

Forecast performance:
• Depends on data quality and availability.
• Data-management issues [1] emerge after model deployment.

Missing features in an operational setting:
• Subset of features used for training is unavailable at test time.
• Reasons: network latency, APIs, cyber-attacks, equipment failures...
• Assessment on ENTSO-E’s Transparency platform: “for every data domain, fewer

than 40% of users reported that data were always there when needed” [2].
• Might not even be possible to model the missingness patterns.
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Missing data at test time

Dealing with missing data:
• Impute-then-regress: computationally costly.
• Retraining without missing features: performs well, but it is impractical [3].

Ideally, deployed models should be resilient and maintain consistent performance
without increasing complexity3.

Design regression models that optimally resilient to missing features at test time
• Requires only solving an LP
• Agnostic to missingness patterns

3A. Stratigakos, P. Andrianesis, A. Michiorri, G. Kariniotakis. Towards Resilient Energy Forecasting: A Robust Optimization
Approach. 2023.
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Proposed Robust Formulation

Linear Regression: n observations of target y ∈ R and features x ∈ Rp, estimate
parameters w ∈ Rp by minimizing loss function l: min

w

1
n

∑n
i=1 l (yi −w⊺xi)

Modeling Feature uncertainty:
• Use α ∈ {0,1}p and model features as xi ⊙ (1−α), where αj = 1 if the j-th

feature is missing.
• U = {α

∣∣ α ∈ {0,1}p,1⊺α = Γ,Mα = 0}, Γ is the budget of robustness.
Feature-deletion robust regression (FDRR): minimize the worst-case loss when Γ
features are missing:

min
w

max
α∈U

∑
i∈[n]

l
(
yi −w⊺(xi ⊙ (1−α))

)
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DA Forecasting

Description: Day-ahead horizon (12h-36h ahead), data arriving in batches, point and
probabilistic forecasts

Data set Source Features

Prices FR, ENTSO-E Lags, calendar, net load, system margin

Load∗ (21 series) GEFCom 2012 Vanilla model [4] for multiple weather stations

Wind∗ (10 series) GEFCom 2014 Wind speed/dir. (10m, 100m),
Fourier terms for diurnal patterns

Solar† (3 series) GEFCom 2014 Numerical Weather Predictions

∗: features deleted in groups, †: one model per hour

Akylas Stratigakos
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DA Forecasting: Benchmarks

• LS∗: a least squares regression with adequate performance.
• LAD∗: a least absolute deviations (ℓ1) regression.
• LS∗ℓ1\ℓ2 : LS regression with ℓ1 (lasso) and ℓ2 (ridge) penalty.
• RF∗: a Random Forest.
• RETRAIN [3]: an LAD model retrained for each combination of missing features. A

total of
∑p

k=1

(
p
k

)
additional models is required (lower bound).

• FDRR(Γ): a robust regression with Γ indicating the robustness budget (a different
model is trained for each Γ).

∗ missing data is filled with mean imputation.
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DA Forecasting: FDRR versus Benchamarks

Improvement:
• Point forecasting: 2% for electricity price,
37% for load, 9% for wind, and 5% for
solar

• Probabilistic forecasting: 5% for electricity
price, 46% for load, 15% for wind, and
21% for solar

• RETRAIN: lower bound, but requires
thousands of separate models.
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ID Wind Forecasting

• Setting: Wind production forecasting
(16MW farm), 30-min ahead,
imputation with persistence.

• Features: Spatio-temporal data from
neighboring farms.

• Improvement: 23% when data are
missing.
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ID Wind Forecasting

• Setting: Wind production forecasting
(16MW farm), 30-min ahead,
imputation with persistence.

• Features: Spatio-temporal data from
neighboring farms.

• Improvement: 23% when data are
missing.
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Trading Renewables in DA market

• Setting: Forecasting trading decisions
(120MW aggregation).

• Features: NWPs at several points.
• Improvement: 29% smaller trading

cost when data are missing.
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Conclusions

Integrated forecasting-optimization (RD1) to improve prescriptive performance:
• 3% improvement in trading performance against forecast-then-optimize
• Reduced modeling effort, evaluation of prescriptive feature importance.

Resilient energy forecasting (RD2) to handle missing data at test time:
• Consistent performance with lower degradation, 20% improvement against

benchmarks when data are missing operationally.
• Agnostic to missing data mechanisms, requires only solving an LP problem.
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Thanks!

contact details: akylas.stratigakos[at]minesparis.psl.eu

Akylas Stratigakos

Resilient energy forecasting and prescriptive analytics 38 / 38



This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 864337

PANEL SESSION

Future challenges in RES forecasting

Georges Kariniotakis, ARMINES | MINES Paris PSL
Gregor Giebel, DTU

Maxime Fortin, RTE
Ana Garcia Gomez, EDP renewables

Ricardo Bessa, INESC TEC
Matthias Lange, EMSYS

Quentin Libois, Météo France

Final conference
14 April 2023



THANK YOU!
Subscribe to our newsletter and follow us on Linkedin to be informed of 

our latest releases!

80


	Diapositive 1
	Diapositive 2 Session 4  Forecasting services and applications 
	Diapositive 3 AFTERNOON SESSIONS
	Diapositive 4 Pierre Pinson
	Diapositive 5 OUTLINE
	Diapositive 6 Digitalization and energy data
	Diapositive 7 The million-dollar question…
	Diapositive 8 New business models for data sharing
	Diapositive 9 Regression markets (1): the regression problem
	Diapositive 10 Regression markets (2): regression market task
	Diapositive 11 Regression markets (3): payments and revenues
	Diapositive 12 Illustrative application example 
	Diapositive 13 Out-of-sample results
	Diapositive 14 Multiple sellers, multiple buyers
	Diapositive 15 Prototype of a data market: Predico
	Diapositive 16 KEY TAKE-AWAY MESSAGES
	Diapositive 17 FURTHER READING
	Diapositive 18 Thank you!
	Diapositive 19 Carla Gonçalves
	Diapositive 20 OUTLINE
	Diapositive 21 CONTEXT
	Diapositive 22 RES COLLABORATIVE FORECASTING
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30 EXTENSION TO DAY-AHEAD FORECASTING
	Diapositive 31 EXTENSION TO DAY-AHEAD FORECASTING
	Diapositive 32
	Diapositive 33
	Diapositive 34 KEY TAKE AWAYS
	Diapositive 35 FURTHER READING
	Diapositive 36 Thank you!
	Diapositive 37 Ricardo Bessa
	Diapositive 38 OUTLINE
	Diapositive 39 Context
	Diapositive 40 MOTIVATION
	Diapositive 41 Framework for risk-aware flexibilty procurement
	Diapositive 42 Building blocks: SCENARIOS & SENSITIVITIES
	Diapositive 43 Building blocks: Flexibility ranking, risk curves
	Diapositive 44 Use of meta-forecasts
	Diapositive 45 META-FORECASTING model
	Diapositive 46 Case-study
	Diapositive 47 Evaluation metrics
	Diapositive 48 example: solve a line congestion
	Diapositive 49 Overral results
	Diapositive 50 KEY TAKE AWAYS
	Diapositive 51 Thank you!
	Diapositive 52 Dr. Dimitris Lagos
	Diapositive 53 OUTLINE
	Diapositive 54 Greek non-interconnected islands
	Diapositive 55 Dynamic Security Assessment
	Diapositive 56 Dynamic Security Assessment in Islands
	Diapositive 57 Test Case – Rhodes Living Lab
	Diapositive 58 Security Assessment Results
	Diapositive 59
	Diapositive 60 Test Case – Astypalea Living Lab
	Diapositive 61 Secure Economic Dispatch Results
	Diapositive 62 KEY TAKE AWAYS
	Diapositive 63 FURTHER READING
	Diapositive 64 Thank you!
	Diapositive 65 Simon Camal
	Diapositive 66 OUTLINE
	Diapositive 67 Context
	Diapositive 68 MOTIVATION
	Diapositive 69 A FORECAST-THEN-OPTIMIZE APPROACH
	Diapositive 70 TRADING RES ON THE DAY-AHEAD ENERGY MARKET
	Diapositive 71 INTEGRATING STORAGE
	Diapositive 72 TRADING RES-BASED ENERGY + ANCILLARY SERVICES
	Diapositive 73 ENERGY + ANCILLARY SERVICES FROM RES+STORAGE
	Diapositive 74 A STOCHASTIC TRADING & CONTROL METHOD
	Diapositive 75 TRADING AND CONTROL WITH ANCILLARY SERVICES
	Diapositive 76 KEY TAKE AWAYS
	Diapositive 77 Thank you!
	Diapositive 79 PANEL SESSION Future challenges in RES forecasting
	Diapositive 80 THANK YOU!
	69e43268-c7db-465f-bdc2-38c913d0d9b1.pdf
	Introduction
	Integrated Forecasting-Optimization
	Methodology
	Highlights

	Resilient Energy Forecasting
	Introduction
	Methodology
	Highlights

	Conclusions
	References

	e4afc719-bfde-418d-b3bb-1496d4fef33b.pdf
	Diapositive 1
	Diapositive 2 Session 4  Forecasting services and applications 
	Diapositive 3 AFTERNOON SESSIONS
	Diapositive 4 Pierre Pinson
	Diapositive 5 OUTLINE
	Diapositive 6 Digitalization and energy data
	Diapositive 7 The million-dollar question…
	Diapositive 8 New business models for data sharing
	Diapositive 9 Regression markets (1): the regression problem
	Diapositive 10 Regression markets (2): regression market task
	Diapositive 11 Regression markets (3): payments and revenues
	Diapositive 12 Illustrative application example 
	Diapositive 13 Out-of-sample results
	Diapositive 14 Multiple sellers, multiple buyers
	Diapositive 15 Prototype of a data market: Predico
	Diapositive 16 KEY TAKE-AWAY MESSAGES
	Diapositive 17 FURTHER READING
	Diapositive 18 Thank you!
	Diapositive 19 Carla Gonçalves
	Diapositive 20 OUTLINE
	Diapositive 21 CONTEXT
	Diapositive 22 RES COLLABORATIVE FORECASTING
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30 EXTENSION TO DAY-AHEAD FORECASTING
	Diapositive 31 EXTENSION TO DAY-AHEAD FORECASTING
	Diapositive 32
	Diapositive 33
	Diapositive 34 KEY TAKE AWAYS
	Diapositive 35 FURTHER READING
	Diapositive 36 Thank you!
	Diapositive 37 Ricardo Bessa
	Diapositive 38 OUTLINE
	Diapositive 39 Context
	Diapositive 40 MOTIVATION
	Diapositive 41 Framework for risk-aware flexibilty procurement
	Diapositive 42 Building blocks: SCENARIOS & SENSITIVITIES
	Diapositive 43 Building blocks: Flexibility ranking, risk curves
	Diapositive 44 Use of meta-forecasts
	Diapositive 45 META-FORECASTING model
	Diapositive 46 Case-study
	Diapositive 47 Evaluation metrics
	Diapositive 48 example: solve a line congestion
	Diapositive 49 Overral results
	Diapositive 50 KEY TAKE AWAYS
	Diapositive 51 Thank you!
	Diapositive 52 Dr. Dimitris Lagos
	Diapositive 53 OUTLINE
	Diapositive 54 Greek non-interconnected islands
	Diapositive 55 Dynamic Security Assessment
	Diapositive 56 Dynamic Security Assessment in Islands
	Diapositive 57 Test Case – Rhodes Living Lab
	Diapositive 58 Security Assessment Results
	Diapositive 59
	Diapositive 60 Test Case – Astypalea Living Lab
	Diapositive 61 Secure Economic Dispatch Results
	Diapositive 62 KEY TAKE AWAYS
	Diapositive 63 FURTHER READING
	Diapositive 64 Thank you!
	Diapositive 65 Simon Camal
	Diapositive 66 OUTLINE
	Diapositive 67 Context
	Diapositive 68 MOTIVATION
	Diapositive 69 A FORECAST-THEN-OPTIMIZE APPROACH
	Diapositive 70 TRADING RES ON THE DAY-AHEAD ENERGY MARKET
	Diapositive 71 INTEGRATING STORAGE
	Diapositive 72 TRADING RES-BASED ENERGY + ANCILLARY SERVICES
	Diapositive 73 ENERGY + ANCILLARY SERVICES FROM RES+STORAGE
	Diapositive 74 A STOCHASTIC TRADING & CONTROL METHOD
	Diapositive 75 TRADING AND CONTROL WITH ANCILLARY SERVICES
	Diapositive 76 KEY TAKE AWAYS
	Diapositive 77 Thank you!
	Diapositive 79 PANEL SESSION Future challenges in RES forecasting
	Diapositive 80 THANK YOU!


