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CONTEXT & CHALLENGES

▪ Renewable energy sources (RES) prediction is key to increase the share of RES in 
the electrical grid (high variability, production anticipation, reduced penalties ...)

▪ Initial challenges

− Numerical Weather Prediction (NWP) models do not always perform well for RES-relevant 
variables

− Weather scientists and RES experts don’t talk much to each other

− RES users take off-the-shelf weather forecasts from NWP models

▪ Challenges tackled in Smart4RES

− How can NWP models contribute to the deployment of RES production?

− How to improve the performance of NWP forecasts for RES prediction?

− How to optimally handle the large amount of NWP models outputs? 

− How to increase end-users awareness?

5RES dedicated weather forecasting models



Enhanced NWP models – tailored for RES needs

6

NWP models are primarily designed to predict near-surface temperature and wind, and precipitation
(not particularly surface solar radiation or wind at hub height)

NWP models scores (hence calibration) do not account for RES-relevant variables

Errors in wind at hub height and solar radiation can be significant

Météo-France network for solar 
radiation observations

Solar radiation bias (blue) and RMSE (red line) of
French operational AROME model over France in 2020

(mean flux = 240 W m-2, bias = 18 W m-2, RMSE = 97 W m-2)

RES dedicated weather forecasting models



Enhanced NWP models – tailored for RES needs

7

Detailed analysis of RES variables can help identify forecasting issues

Further developing the evaluation of RES variables in NWP models will improve RES forecasts

RES-versions of NWP models could be developed

Monthly solar radiation bias for different AROME cloud regimes (see right)
under overcast conditions

Cloud regimes used to evaluate distinct AROME situations

high clouds are too transparent

low clouds are too opaque

courtesy A. Magnaldo

RES dedicated weather forecasting models



Enhanced NWP models – new outputs
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Additional internal variables can be extracted from NWP models
(e.g. cloud optical thickness, direct/diffuse/spectral radiation)

Not yet extracted because extra computation/storage/transfer cost and/or no demand/need

Useful variables to be identified and assessed by final users → user awareness to be developed

Standard output Enhanced outputs

W m-2 W m-2

W m-2
Broadband GHI

Spectral direct fluxes Spectral diffuse fluxes

RES dedicated weather forecasting models



Enhanced NWP models – refined physics
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The representation of aerosols (and their impact on solar radiation) can be improved
by using real-time aerosols instead of monthly climatologies

Physics development priorities are set by needs → feedbacks from users are essential (e.g. RTE)

Climatological
Aerosol Optical Depth (AOD)

over France~0.15
Operational AROME 

CAMS (real-time) AOD
over France~0.6

Upcoming AROME 
version

30 W m-2 positive bias
largely reduced

Average over ~180
stations in France

Dust event over France on 24 Feb 2021
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Enhanced NWP models – higher resolution
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Higher temporal resolution outputs can be available
(model time step ~ 1min) and are physically meaningful

Data storage issues → full resolution not output

Comparison between 1-hour (operational, ref) and 5-min 
(Smart4RES, grey) resolution outputs for wind speed forecasts 

Comparison of observed and 
simulated low-frequency (LF) 

and high-frequency (HF) 
variations Observations

Simulations

LF

HF

𝑥
= Ǉ𝑥
+ 𝜖𝑥
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Ensemble simulations

11

How to handle the large amount of data associated to ensemble forecasts?

How to build user-understandable forecasts?

How to build seamless forecasts from distinct ensembles?

credits : UK Met Office

The atmosphere is chaotic
→ ensemble simulations can be used to capture 
and quantify the uncertainty of its temporal 
evolution

RES dedicated weather forecasting models



Ensemble simulations – uncertainty

12

The variability among ensemble members provides a quantitative estimation of forecast uncertainty

Relative standard deviation (RSD = standard deviation/mean) across an ensemble of 25 AROME members

Wind at 100 m Surface solar radiation

RES dedicated weather forecasting models



Ensemble simulations – pseudo-deterministic forecasts

13

Ensembles contain a wealth of information but can be hard to handle by the end users

RES production models often need a single deterministic forecast

Well designed PD forecasts (e.g. percentile) can outperform ensemble means and deterministic forecasts

RMSE improvement of PD 100 m wind forecasts  

time time

Pseudo-deterministic (PD) forecast
=

building a single forecast from an ensemble of simulations

PD forecast
ensemble

RES dedicated weather forecasting models



Ensemble simulations – probabilistic products

14

Rare events (such as wind ramps) can be detected in ensembles, sometimes not in deterministic forecasts

Tailored probabilistic products can be built (e.g. different ramp definitions, cut-out)

Observed (dots) and simulated (dashed lines) positive (top)

and negative (bottom) ram

Schematic description of a positive ramp (threshold S0)

RES dedicated weather forecasting models



Ensemble simulations - Seamless forecasts

15

Using different models for different leadtimes can be advantageous

Discontinuity at the junction between models should be minimal for end users

Matching aims at minimizing discontinuity while preserving the number of ensemble members

Schematic representation of the seamless junction between
the AROME and ARPEGE ensemble forecasts.

RES dedicated weather forecasting models



Ensemble simulations - Seamless forecasts
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Smart matching strategy (e.g. Hungarian method) ensures minimum discontinuity
of the individual ensemble members
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KEY TAKE AWAYS
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Weather scientists and RES users should talk more to each other to
⚫ Get the best out of NWP models (new outputs, finer resolutions ...)
⚫ Drive NWP models developments
⚫ Derive original RES-dedicated products from weather forecasts 

Ensemble forecasts are becoming the standard of weather prediction
⚫ They can be used to quantify forecast uncertainties
⚫ Post-processing (e.g. PD forecasts, seamless forecasts) can help make them accessible to non-expert users
⚫ Tailored probabilistic products can become valuable decision-aid tools

Quantitative improvements achieved in Smart4RES
⚫ 10-15 % reduction in RMSE for 100 m wind forecasts when using smart PD forecasts
⚫ 3-5% reduction in RMSE for 100 m wind and solar radiation forecasts with higher spatio-temporal resolution 

RES dedicated weather forecasting models



FURTHER READING

18

▪ Public deliverables : D2.1 and D2.2 

▪ Publications

⚫ Jahangir, E., Libois, Q., Couvreux, F., Vié, B., & Saint‐Martin, D. (2021). Uncertainty of SW cloud radiative 
effect in atmospheric models due to the parameterization of liquid cloud optical properties. Journal of 
Advances in Modeling Earth Systems, e2021MS002742

⚫ Lindsay, N., Libois, Q., Badosa, J., Migan-Dubois, A., & Bourdin, V. (2020). Errors in PV power modelling
due to the lack of spectral and angular details of solar irradiance inputs. Solar Energy, 197, 266-278.

RES dedicated weather forecasting models



Thank 
you!
• Quentin Libois, Météo-

France: 
quentin.libois@meteo.fr
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High-resolution weather models

Large Eddy Simulation (LES): the future



Grand challenges in wind energy

2121

P. Veers et al., Science 10.1126/science.aau2027 (2019)

Grand challenges in wind energy:

1. Building better turbines

2. Building better wind farms  

3. Integrating renewables in the 
energy system
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What is Large-Eddy Simulation



Parametrizations in numerical weather prediction (NWP)

23

Parametrization: expressing the sub-grid processes in terms of resolved quantities

See for example https://www.ecmwf.int/en/elibrary/18714-ifs-documentation-cy45r1-part-iv-physical-processes

resolved

resolved

resolved

parametrized parametrized

Typical processes that are 
parameterized in NWP:
• Turbulence
• Large-scale clouds
• Convective clouds
• Surface drag
• Radiation
• Precipitation
• Surface energy balance

Schematic view on transport by sub-grid processes
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Parametrization: expressing the sub-grid processes in terms of resolved quantities

See for example https://www.ecmwf.int/en/elibrary/18714-ifs-documentation-cy45r1-part-iv-physical-processes

resolved

parametrized

Typical processes that are 
parameterized in LES:
• Turbulence
• Large-scale clouds
• Convective clouds
• Surface drag
• Radiation
• Precipitation
• Surface energy balance 

(in high resolution)

The LES grid is fine enough to resolve turbulence, clouds and 
the surface. “Assume less, compute more”

Explicit modelling of:
• Wind turbines
• Canopies
• Buildings
• Turbulence
• Clouds / fog

Picture courtesy Quentin Libois

Parametrizations in large-eddy simulation (LES)



Forecasting with LES: topics addressed in Smart4RES

25LES: the future

Improving an LES based 
forecast model

Creating day-ahead RES 
forecasts for different sites

Experimenting with data-
assimilation for short-term 

forecasts

How can LES models be 
improved for better RES 
forecasts for all types of 
locations?

What is the forecast skill for 
different Smart4RES sites?

How can short-term forecasts be 
improved by using recent 
observations?



Improving Large Eddy Simulation for operational forecasting 
anywhere in the world

▪ Objective: make it ready for production 
anywhere in the world

26

Gilbert, C., Messner, J. W., Pinson, P., Trombe, P., Verzijlbergh, R., Dorp, P. Van, & 
Jonker, H. (2019). Statistical Post-processing of Turbulence-resolving 
Weather Forecasts for Offshore Wind Power Forecasting. Wind Energy, 1–16. 
https://doi.org/10.1002/we.2456

2019: LES of windfarms in homogeneous 
terrain (e.g. offshore wind farms)

LES: the future
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Surface representation

▪ Challenge: NWP (10km) based surface 
representations do not always work for 
extremely high resolution (100m)

▪ Surface energy balance solved on all obstacles

▪ Mapping ECMWF pressure level fields on LES 
grid with proper bases level

Example land use:
1. land use class 
2. Digital terrain model
3. Canopy density (optional)
4. Urban cover (optional)

1 2

3 4

ECMWF surface heights

LES: the future



Computationally efficient 
interactive radiation

28

▪ Challenge: radiation modules 
computationally intensive

▪ Coupling between LES model and the Ecrad
radiative transfer code

▪ Fully interactive radiation. Radiative fluxes 
applied every time-step, using a smart 
implementation 

▪ Side-steps all the ‘trouble’ of cloud overlap 
assumptions in classical NWP model

LES: the future



Case highlight: Aeiforiki wind farm on Rhodes

29

Land use classes

Small wind farm on mountain ridge

LES: the future



30

Aeiforiki – A glance at LES results

• Turbulent fluctuations in 
forecast

• Mean wind very different 
from ECMWF

Flow acceleration 
over the ridge

LES: the future



Quantitative results over a range of sites
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Aeiforiki: MAE improvement of 14%

All 7 sites: average 9% improvement in MAE
(-2 to 20%)

LESECMWF

LES: the future



The missing scale

3232

✓ Large scale fluctuations from 
ERA5/ECMWF tendencies

✓ Turbulent fluctuations from LES
× Too little mesoscale fluctuations  

Cumulative distributions of wind speed 
ramps over different time-scales

LES: the future



Two changes to our boundary conditions: 1) open 
boundary conditions 2) mesoscale model as precursor

3333

LES

MESO

MESO

MESO

MESO

MESO MESO MESO MESO

MESO MESO MESO MESO

ECMWF ECMWF ECWMF ECMWF ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF

ECMWF ECMWF ECWMF ECMWF ECMWFECMWF

LES

ECMWF tendencies
(rate of heating and 

moistening, pressure 
gradients) 

LES variables are circulated

LES: the future



Comparing old and new boundary conditions

34

https://worldview.earthdata.nasa.gov/?v=1.9500628641860795,50.145380821497554,8.215585471632675,53.5410173639559
9&l=Reference_Labels_15m,Reference_Features_15m(hidden),Coastlines_15m,VIIRS_NOAA20_CorrectedReflectance_True
Color(hidden),VIIRS_SNPP_CorrectedReflectance_TrueColor(hidden),MODIS_Aqua_CorrectedReflectance_TrueColor,MOD
IS_Terra_CorrectedReflectance_TrueColor(hidden)&lg=true&t=2017-02-21-T09%3A08%3A14Z

Periodic Open BC with ERA5

Open BC with ERA5 and Meso Meso Satellite
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The gap is closed

-Observations
-Mesoscale simulation
-LES with periodic boundaries
-LES with mesoscale boundaries

Frequency (1/s)
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Data assimilation

36

▪ Challenge: estimating initial conditions in a local 
weather model

▪ Data assimilation: combine measurements and model 
to estimate the current state of the atmosphere

▪ Ensemble Kalman Filter suitable for the highly non-
linear LES model

▪ We experimented with tower measurements, surface 
pressure measurements and a simplified atmospheric 
model

Figure from Van Leeuwen et al (2022)
https://doi.org/10.1007/978-3-030-96709-3

LES: the future



Data assimilation results using a simplified LES model 

37

t = -600 sec t = 600 sec t = 3600 sec

▪ Start with an ensemble 
of forecasts

▪ Adjust each ensemble 
member to observations

▪ Use adjusted state as 
start for new forecast 

LES: the future



Relative improvements in the short-term

38LES: the future



Fog: a difficult forecasting problem

39

LES without data assimilation LES with data assimilation Observations
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• Initialisation with observations from 2200 UTC

• ‘Memory’ of the atmosphere in this case ~12 hours

LES: the future



The future of high-resolution weather forecasting: NWP

40

[1] Palmer, T., & Stevens, B. (2019). The scientific challenge of understanding and estimating climate change. In Proceedings of the National Academy of Sciences of 
the United States of America (Vol. 116, Issue 49, pp. 34390–34395). National Academy of Sciences. https://doi.org/10.1073/pnas.1906691116

[2] Dueben, P. D., Wedi, N., Saarinen, S., & Zeman, C. (2020). Global simulations of the atmosphere at 1.45 km grid-spacing with the integrated forecasting system. 
Journal of the Meteorological Society of Japan, 98(3), 551–572. https://doi.org/10.2151/jmsj.2020-016

Which is the satellite image?

Traditional weather and climate models getting finer [1]

1.45 km grid-spacing

ECMWF experimenting with 1km resolution on 
Piz Daint supercomputer (#20 in Top500) [2]

https://doi.org/10.1073/pnas.1906691116


The future of high-resolution weather forecasting: LES

41

Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P., & van 
Meijgaard, E. (2015). Weather forecasting using GPU-
based large-Eddy simulations. Bulletin of the American 
Meteorological Society, 96(5). 
https://doi.org/10.1175/BAMS-D-14-00114.1

• 2023: beta version of country 
scale 400x400km LES

• Uses 16 GPUs on ‘standard 
cloud system’ (2x DGX A100)

• 2h wall-clock time for 24h 
simulation

• 2015 (!) proof-of-concept 
country scale LES

• Uses 256 GPUs on PRACE 
supercomputer

• 4h wall-clock time for 1h 
simulation

• 202?: proof-of-concept continental 
scale LES

• Selene GPU supercomputer (#9 
Top500)

• 2h wall-clock time for 24h 
simulation



42High-resolution weather forecasting



The future of weather forecasting

43

Wind farm level

EU level

Global
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Next generation weather model:
- Turbulence and cloud resolving ( = LES ! )
- Uses big data and massive computational power
- Supports energy transition and climate adaptation

Synoptic scale
Cloud system

Convection Turbulence

Who will be first?

2023 2021



KEY TAKE AWAYS

44

Large-Eddy Simulation provides a high-resolution forecasting 
technique suitable for RES needs: wake effects, very local wind 
climate, clouds, etc

We demonstrated average improvement over industry 
benchmark forecast of 9% for a range of sites

Data assimilation with Ensemble Kalman filtering can improve 
short-term forecasts. Initial results show ~25% improvement

Future weather prediction models will cover the length scales 
relevant for renewables, from 100m to 10000 km.

LES: the future



Thank you!
• R.A.Verzijlbergh, Whiffle: 

remco.verzijlbergh@whiffle.nl

• Thanks to our work-package 
partners: MeteoFrance & DLR

• Thanks to the entire Smart4RES 
consortium
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Agenda

1. Motivation

2. Analysis of a network of all-sky-imagers for solar nowcasting

3. Hibrid combined forcasts using ground observations, all-sky and satellite imagers

4. Conclutions and Outlook
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Motivation: challenges and 
opportunities of weather 

observations and solar forecasting

48



Motivation

49

1 m

1 km

10 km

1000 km

minutes hours days
point

All Sky Imager 

Irradiance prediction models

numerical 
weather prediction 

satellite 

All Sky Imager 
network

Objectives

1. How can we use a dense network of 
ASIs to improved the accuracy and 
coverage of the irradiance forecast ?

2. Does this new this new ASI network 
forecast improves the performance of 
the  lower resolution satellite forecast 
when combination together ? 

DLR’s Eye2Sky network
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▪ Start of project 2018

▪ 35 ASI in operation (40 planned)

▪ 14 meteorological stations  

▪ 12 RSI-based meteorological stations

▪ 2 solar tracker stations

▪ 2 ceilometer

Eye2Sky Overview
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Short term solar forecasts with Eye2Sky 

Daily video of all cameras Result: Short-term forecast



Analysis of a network of all-sky-
imagers for solar nowcasting

52



ASI-network very short-term forecast (up to 1 hour)

53

Cloud mask : CNN detects 

and classifies sky/ high/ 

intermediate/ low clouds

• Height : stereoscopy from multiple cameras

• Cloud velocity : 2D cross-correlation 3 

sequential images  

Cloud motion vectors for displacement into the 

future

• global elevation model

• DNI, DHI measurements

• Transmittance = DNI / DNI_clear

• Sensitivity analysis : all clouds

Resolution 50 m x 50 m, every 30s

Area up to 110 km x 100 km

35 ASIs

1.

2. 3.

CNN: Convolutional neural network

DNI , DHI : Direct Normal Irradiance, Diffuse horizontal Irradiance

4.



Validation of forecast at the site OLUOL
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Eye2Sky network

Available data 92 preselected days in 2020 (all weather 

conditions)
Validation station OLUOL

Calibration station OLDON

Dataset 1 : Homogeneity OLDON gnd observations extrapolated to 

OLUOL (spatial persistance)
Dataset 2: ASI-Pair OLDON   - OLMAR

Dataset 3 : ASI-Network All ASI’s except   OLUOL

Combi forecast horizon 30 min

Combi forecast resolution 1 min



Validation at UOL on DNI using variability classes [5]

55

• ASI pair predicts DNI at UOL more accurately 
compared to homogeneity under most conditions

• ASI network has clear advantage over homogeneity 
& ASI pair under all conditions

• Improvements related to combination of 
perspectives and also to method to assign 
transmittance

Highly variable

Clear sky Overcast



Validation ASI net vs ASI pair forecast

56

E.g. for GHI at DON:

20 %

• ASI network forecast presents a relative 
improvement  on RMSD of around 20% between 
the leadtimes 2 min to 15 min.

• Advantage of the ASI network over the ASI pair 
and persistence remains for large lead times

• As expected the ASI network outperforms an 
ASI pair even more clearly at locations farer 
from the ASI pairs location (not shown here)



Hibrid combined forcasts
using ground observations, 
all-sky and satellite imagers

57



Combination algorithm

อ𝑙𝑠𝑞. min 
𝒏=0

𝑁−1

𝑎𝒏 · ഥ𝐹𝑛 + 𝑏 − 𝐺𝐻𝐼

per leadtime

ቤ𝐶 = 
𝑛=0

𝑁−1

൫𝑎𝑛 · 𝐹𝑛 ) + 𝑏
per leadtime

Inference
(actual 

timeseries / maps)

Reference irradiance
(timeseries)

Training
(historical 
timeseries)



Validation of the Hybrid forecast
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Combination SAT + ASInet

Available data 07.2020  - 08.2020 (2 months) 

Training range Last 30 days from forecast instance

Training stations OLUOL, OLCLO

Validation Range 08.2020

Validation sites OLDON, PVAMM

Combi forecast horizon 30 min

Combi forecast time resolution 1 min

Data filter Elevation < 20°



6.19%

Benchmark of inputs vs combined forecast

60

• Improv. Over persistance

• RMSE (least squares min)

• MAE improv. Over Sat

• Optimal mix of weigths

• KPI (10-15% RMSE) : 

improvement in RMSE of 5% to 

14% with respect to satellite 

forecasts and 3% to 15% with 

respect to the ASI network

10.4%

3.3%

26.7%

15.1%



Key take aways

▪ The statistical combination of the images of the ASIs in a network help to mitigate the errors 
which are in the ASI pair configuration (cloud base height, cloud segmentations and cloud 
velocity).

▪ The network of ASIs provides instantaneous maps of solar irradiance and outperforms the very-
short-term prediction (up to 1 hour) of the state of the art ASI-Pair system. 

▪ Combining the all-sky imagers network and satellite forecasts outperforms individual forecasts 
and extracts the best of both approaches for short-term forecasts.

▪ The developed forecasts should be validated at locations in order to assess the performance on 
different weather conditions (dominant cloud situation, aerosol content, etc.). 

▪ New developments of interpolation an regression strategies (ML) will be implemented to 
compare performance against this linear base case (is the additional effort/complexity 
compensated by accuracy?). 

61



FURTHER READING

▪ Public deliverables on Smart4RES WP2

▪ Publications

▪ [1] Fabel, Y., et al.,(2022). Applying self-supervised learning for semantic cloud segmentation
of all-sky images. Atmospheric Measurement Techniques, 15(3), 797-809.

▪ [2] Blum, N. B., et al., (2021). Cloud height measurement by a network of all-sky imagers. 
Atmospheric Measurement Techniques, 14(7), 5199-5224.

▪ [3] Blum, N. B. et al.,(2022). Measurement of diffuse and plane of array irradiance by a 
combination of a pyranometer and an all-sky imager. Solar Energy, 232, 232-247.

▪ [4] Blum, N. B., et al., (2022). Analyzing Spatial Variations of Cloud Attenuation by a Network 
of All-Sky Imagers. Remote Sensing, 14(22), 5685.

▪ [5] Schroedter-Homscheidt, M., et all, (2018). Classifying ground-measured 1 minute
termporal variability within hourly intervals for direct normal irradiances.. Meteorologische 
Zeitschrift, 27(2),161-179
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Thank you for your attention
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