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1 Executive summary 

Nowcasts from all sky imagers (ASIs) can reach a spatial resolution of down to 5 m × 5 m and 

can provide nowcasts for lead times of 0 to 15 min (Nouri et al., 2020b). Nowcasts of solar 

irradiance based on up to four ASIs located in proximity have been demonstrated 

experimentally (Nouri et al., 2018; Peng et al., 2015). So far, such nowcasts have been applied 

mainly to predict the production of the solar power plants in which they were located. 

Compared to ASI nowcasts, satellite based forecasts present a much higher spatial and 

temporal coverage in detriment of a lower resolution. Today, these forecasts can be processed 

for any region included in the satellite view with a 1km x 1km resolution at the equator and with 

a temporal resolution of 5 to 15 min.  

An urban distribution grid can cover an area of e.g. 13 km × 12 km. Typically, it features 

numerous photovoltaic installations with a name plate capacity of 10 to 30 kW. Conventional 

ASI-based nowcasting systems are often used to nowcast the production of a single PV plant 

located close to the ASIs. Compared to this case, a conventional ASI-based nowcasting system 

with 2 to 4 ASIs is expected to be less accurate if the production of these distributed installations 

needs to be nowcasted. This motivates the use of an enhanced evaluation which combines 

individual ASIs and ASI pairs into an ASI network. The Eye2Sky ASI network provides the 

experimental infrastructure for these combination tasks. At the time of the experiment, Eye2Sky 

incorporated 12 ASIs in the urban area of Oldenburg and a sparser setup of 11 ASIs in its rural 

environment of 110 km × 100 km. This spatial extent turns out to be a very well suited test case 

to assess the advantages that a combination between the highly resolved ASI network 

nowcast and the high coverage satellite forecast brings to the overall forecasting 

performance.  

An enhanced method is developed which allows to evaluate Eye2Sky’s distributed ASIs in 

combination in the sense of an ASI network. For this, the workflow of a state-of-the-art ASI-based 

nowcast (e.g. Nouri et al., 2020b) is followed. The various intermediate products of an ASI-based 

nowcast (cloud height, cloud segmentation, cloud velocity and diffuse irradiance) are merged 

between all available data sources by dedicated statistical procedures. This way, we aim to 

mitigate errors and to extend the spatial and temporal coverage of the nowcast. The results of 

the ASI network are validated in comparison to a state-of-the-art ASI pair and a persistence 

nowcast. Depending on the evaluated station, the ASI network reduces Root Mean Square 

Deviation (RMSD) by 23-30% (35 − 50 𝑊/𝑚2), 15-21% (25 − 37 𝑊/𝑚2), 12-16% (20-27 𝑊/𝑚2), 8-

12% (14 − 21 𝑊/𝑚2) over persistence at evaluated lead times of 5, 10, 15, 20 min. The ASI 

network’s advantage over the ASI pair and persistence increases in particular if more 

peripheral locations are evaluated. As to be expected, the ASI-based approaches bring a 

larger improvement over persistence in more variable atmospheric conditions. In these more 

variable conditions, the ASI network reduces RMSD by up to 36% and up to 75 𝑊/𝑚2 over 

persistence. The ASI network’s nowcast is also evaluated for higher lead times. Up to a lead 

time of 95 min, the ASI network has a lower RMSD than persistence.  

A second method to combine the highly resolved ASI network nowcast with the satellite-based 

forecast was developed. The method uses a linear regression to find optimal weights to 

combine the forecast inputs in such a way that the average error metrics are minimized with 

respect to ground measurements. Using historical forecasts, the linear regression of the 

combination indirectly characterizes the mean local weather conditions that influence the 

forecast accuracy. We found that this newly developed hybrid forecast outperforms the RMSD 

of persistence and the individual input forecasts for all lead times calculated. It shows an 

improvement on RMSD of 5.07% to 13.97% with respect to satellite forecasts and 7.55% to 15.09% 

with respect to the ASI network forecast on lead times going from 5 to 30 min. It also shows a 

better RMSE on highly variable conditions.  
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Key messages: 

• An all-sky imager (ASI) network is developed to nowcast solar irradiance for lead times 

of up to two hours 

• The ASI network’s RMSD is frequently 25% lower than the one of the state-of-the-art ASI-

based reference nowcast, depending on location, lead time and atmospheric 

conditions. 

• The hybrid forecast obtained with the combination of an ASI network nowcast with a 

satellite forecast outperforms the RMSD of persistence and the individual input forecasts 

for all lead times calculated. 

The outcomes of this work package have been published partly in journal articles (Blum et al. 

2021, Nouri et al. 2021, Blum et al. 2022, Fabel et al. 2022) and further publications are under 

preparation. 
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1 Introduction  

1.1 Context 
Solar power generation, based on Photovoltaic (PV) and Concentrated Solar Power (CSP), are 

fast growing technologies that have establish themselves as an important contributor of the 

overall power energy generation sector. In 2020, the global production of PV power is 

estimated to be between 140 and 160 GW. In the same year the number of countries that have 

installed more that 1GW PV power generation annually increased to 18  (Jäger-Waldau, 2021). 

This growth implies a constant increasing PV power generation penetration in several electric 

power systems around the world. As a result, the stability of the electrical grids is threatened 

due to the inherent weather dependent nature of this generation (mostly due to clouds 

formation and movement). The ability to forecast irradiance becomes then a crucial factor to 

ensure PV power reliability, optimal management strategies (e.g., storage) and grid stability.  

During the last decades, several techniques have been developed for estimating the 

irradiance at the earth’s surface. Due to their high spatial and temporal coverage satellite 

based forecasts and Numerical Weather Prediction models (NWP) are the most commonly 

used techniques for intraday irradiance/power forecasting (Hammer et al., 2003 / Sperati et 

al., 2016). This high coverage is achieved in detriment of a low temporal resolution, commonly 

15 minutes to 1 hour, and a low spatial resolution, commonly in the kilometres range. More 

recently, short term forecasts (nowcast) from All Sky Imagers (ASI) provide highly resolved 

temporal and spatial irradiance predictions on a localized level. These nowcasts can reach a 

spatial resolution of down to 5 m × 5 m and with lead times up to 15 min (Nouri et al., 2020b). 

So far, ASI-based nowcasts have been applied mainly to predict the local production of solar 

power directly on the plants where they are located.  

In this context, two main research questions are to be addressed within this work: 

1. Does the combination of multiple ASIs installed on an extended network allow an 

effective increase of the spatial extent, forecast horizon and overall forecast accuracy? 

2. Could we combine these forecast sources of such heterogeneous nature to produce 

temporally and spatially highly resolved unique forecasts that exploits the advantages 

of the individual sources? 

1.2  Objectives 
In this task we first aimed to develop new algorithms which allow to use the novel Eye2Sky all-

sky-imager (ASI) network to provide spatially and temporally highly resolved nowcasts of solar 

irradiance for whole distribution grids. In particular, we aimed to generate nowcasts with a 

spatial resolution in the order of 10 m and a temporal resolution of 30 sec. Further, the nowcast 

should be applicable to the whole Eye2Sky network area with its extent of 100 km x 100 km. 

Finally, in the urban area of Oldenburg, located in the center of Eye2Sky network, we aimed 

to generate ASI-based nowcasts for forecast lead times of up to two hours. To achieve these 

goals, the new algorithms aim to combine the analysis products of the individual ASIs and ASI 

pairs to mitigate deviations, to increase the computational efficiency as well as spatial and 

temporal coverage of the ASI-based nowcast. 

Our second aim in this task is to develop an algorithm for combining data from ASIs, satellite 

and NWP products in order to achieve a highly resolved hybrid irradiance forecast. This new 

combined forecast should present an enhanced update rate, higher temporal and spatial 

resolutions and an accuracy improvement with respect to the individual forecast inputs for 

horizons of up to 1 to 6 hours. The newly developed method should assimilate the higher 
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resolution camera information into the other forecasts cloud scenes to obtain an overall RMSE 

improvement over the whole forecast horizon. As a result, the combination should be able to 

provide minute-level variability information of the overall product. To develop this new 

algorithm, we have available the forecast for the ASI network for 2 consecutive summer months 

in the year 2020 (July and August 2020). In the same time range, the DLR’s operational satellite 

forecast is also available. In the context of this project, our Partner Meteo France had 

processed the high-resolution NWP forecast AROME for 2 summer months on 2019 (July and 

August 2019) and 2 winter months of 2020 (February and March 2020). For the Arome’s 

processed summer months it was not possible to process an accurate ASI network forecast due 

to the low number of cameras installed at the time. The winter months data are of low interest 

when developing an algorithm for solar irradiance forecast. Due to this, for the time being, the 

time range including the 2 summer months with Satellite and ASI network forecasts are used for 

this work. The NWP model Arome could not be taken into account on the developed 

combination.  

1.3  Contributions 
The enhanced ASI-based analysis and forecast products were developed as maps. These map 

products can be exported and can be combined easily with data from other sources. In 

particular the combination of such maps with satellite-based maps was already tested in this 

study. In the same way, this interface can be used to support the ASI-based nowcast with data 

from satellite or other sources. These analysis and forecast products were validated in 

comparison to data from state-of-the-art ASI-based approaches and were found to be notably 

more accurate. The analysis products include cloud base height, cloud motion vectors and 

cloud attenuation (individual for each grid cell of the map). The forecast products include 

maps of global horizontal, diffuse horizontal and direct normal irradiance. 

The hybrid combined ASI network + satellite forecast developed in this study is produced as 

maps or time-series as needed. The input forecasts for the combination are needed as map 

products. The main regression algorithm used to produce the combined forecast is based on 

irradiance timeseries from the forecast input sources for pixels where ground measurements 

are known. Once the optimal combination factors are found, the hybrid forecast global 

irradiance maps or timeseries are produced. The highly resolved hybrid forecast was validated 

against the individual input sources and satellite persistence. This newly developed forecast 

outperforms the error metrics used on this study for all lead times processed. 
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2 Overview of the methodology 

In this deliverable we worked mainly on the development of 2 new irradiance forecast 

methods, the ASI network forecast (part 1, described in Section 3) and a hybrid satellite + ASI 

network combined forecast (part 2, described in Section 4). Figure 1 shows the data flow 

between the different stages of development. Both forecast methods used reference data 

from the project’s dataset # 1, defined in the Smart4RES Data Management Plan as the 

“NorthWest meteorological measurement network & PV plants”. This dataset is based on the 

meteorological and ASI camera stations installed in the Eye2sky network in Northwest Germany 

(see Figure 2).   

 

Figure 1. Overview of the data flow between the different parts of this deliverable 

In the first part of this study, we have developed a method to produce irradiance forecasts 

from a highly dense network of ASIs (29 in 100 km²). The ASIs on this network are used to derive 

a segmented cloud mask, the cloud heights and cloud speeds. Here, 3 cloud mask images are 

used to derive the cloud motion vectors. These vectors are used to extrapolate the cloud mask 

into the future. Finally, ground observations from the same dataset are overlaid on the cloud 

masks to derive irradiance maps. An intelligent combination of the high spatial density of ASIs 

allows to extend the spatial and temporal coverage compared to a single (or pair) ASI system. 

In the second part of this study, we developed a method to combine this newly developed ASI 

network forecasts with the well-known satellite-based forecast. These 2 forecast inputs are 

highly heterogeneous in nature. Therefore, first the forecasts inputs are homogenized in space 

and time. Then, historical forecasts are used to optimize the coefficients on the linear 

combination of the forecast inputs. Once the optimized coefficients are found, the present 

(and not historical) forecasts are combined using the optimized weights to produce a hybrid 

irradiance forecast in the form of maps or timeseries. At the end the hybrid forecast shows 

improved error metrics compared to the forecast inputs for a horizon of 30 minutes and for 

conditions with high irradiance variability. 
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3 Advanced analysis of camera images for cloud 

characterization 

3.1  Introduction 
In the first part of this study, we developed the enhanced ASI-based nowcasting system which 

aims to provide nowcasts for higher lead times and to increase the accuracy of the nowcast 

in comparison to previous ASI-based nowcasts.  

Errors in the estimation of cloud base height (CBH) are expected to strongly affect a nowcast’s 

accuracy (Nouri et al., 2019a; Kuhn et al., 2019) as the position of the shadow cast on the 

ground by a specific cloud is directly related to the sun elevation angle and CBH.  We start 

from the estimations of CBH from individual ASI pairs. A statistics-based approach then merges 

these CBH values into a more accurate estimation. 

In order to detect small scale variations of the solar irradiance, the location and attenuation of 

clouds need to be captured more accurately. A cloud classification is used as indicator of 

cloud attenuation. The indicator of cloud attenuation received from multiple ASIs is combined 

to filter out erroneous observations of clouds or sky. 

Spatial variations of diffuse horizontal irradiance (DHI) were typically neglected by previous ASI-

based systems (e.g. Nouri et al., 2021). A new method is developed which measures DHI by the 

distributed ASIs. Consecutively, these measurements are combined into a map of DHI. 

To forecast the positions of clouds over larger lead times, a more accurate cloud tracking 

procedure is required. For this purpose, the cloud motion vectors from all ASIs are combined 

into a more accurate estimate. Further, the new cloud tracking procedure also accounts for 

changes of the cloud speed and direction of motion over the trajectory of a cloud particle.  

3.2  Case studies 
The development and validation of the ASI-network nowcast is performed with the dataset # 

1, defined in Smart4RES Data Management Plan as the “NorthWest meteorological 

measurement network & PV plants”. This dataset is based on the measurements from the DLR’s 

Eye2Sky network, shown in Figure 2. The dataset is summarized in Table 1.  

 ASI network  ASI network  

increased lead times 

Spatial resolution  50 m 50 m 

Extent 40km x 40 km 

(centred in Oldenburg 

city) 

120 km x 120 km 

(Eye2Sky region) 

Product projection Transverse mercator Transverse mercator 

Number of ASIs included 12 23 

Forecasts update 30 s 30 s 

Forecast step 1 min 5 min 

Forecast horizon 30 min  130 min 

Availability 120 days in 2020 25 days in 2020 

Parameter GHI GHI 

Type Deterministic Deterministic 

Provider DLR DLR 

Table 1. Dataset used for the development and validation of the ASI network. 
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Figure 2. Eye2sky Network overview. Camera stations (blue circles) are camera only stations, Meteo stations 

(brown circles) are camera + meteorological stations equipped with an RSI and Reference (green circles) are 

only meteorological stations equipped with thermal radiometers + solar tracker. 

As reference ground data three meteorological stations from the Eye2sky network are taken: 

OLDON, OLCLO, OLUOL. These are the reference stations available inside the extent of the ASI 

network forecast. Each of these meteorological stations is equipped with a rotating 

shadowband irradiometer (RSI) to measure DNI, DHI and GHI. The description of the ground 

validation dataset is shown in Table 2. The days used for model development and validation 

were selected to represent the year 2020 in terms of seasons and of meteorological conditions 

expressed by the DNI variability classes of Schroedter-Homscheidt et al. (2018). Further, the days 

in the validation dataset were chosen to form series of typically 3 to 4 days. This rule was not 

followed strictly due to data gaps as well as to represent the meteorological conditions of the 

year 2020 as good as possible.  

Data type Parameter  Locations Days from 2020 Duration filtering 

Training  DNI, DHI OLDON January 13, 24; February 04, 15, 26; March 08, 
13, 19; April 10, 21; May 13, 24; June 03, 15, 26, 
July 07, 18, 29; August 07, 09, 20, 31; September 
11, 22; October 03, 13, 25; November 05, 16, 27. 

30 days Solar 

elevation 
> 15° 

Validation GHI  OLDON, 
OLUOL, 

OLCLO 

January 14, 15, 16, 17, 25, 26, 27, 28; February 
05, 06, 07, 08, 16, 17, 18, 19, 27, 28, 29; March 
09, 10, 11,14, 15, 16, 20, 21, 22; April 11, 12, 13, 
15, 17, 18, 19, 24; May 15, 16, 25, 26, 27; June 
05,06, 07, 16, 17, 18, 27, 28, 29; July: 08, 09, 10, 
11, 19, 20, 21, 22, 30, 31; August 01, 02, 08, 10, 
11, 12, 13, 21, 22, 23, 24; September 01, 02, 03, 
04, 12, 13, 14, 15, 23, 24, 25, 26; October 04, 05, 
06, 15, 16, 17, 26, 27, 28. 

92 days 
 

Solar 
elevation 

> 15° 

Validation 

increased 

lead times 

GHI OLDON January 17; February 05, 07, 17, 18; May 15, 16, 
26; June 05, 18, 28, 29; July 10, 11, 30; August 
02, 12, 21; September 01, 04, 12, 13, 25; October 
17, 28 

25 days Solar 

elevation 
> 15° 

Table 2.  Datasets used for the development and for the validation of the nowcast. 
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3.3  Methodology 

3.3.1 Estimating cloud height  
Nowcasting systems based on all-sky-imagers (ASIs) need to know CBH accurately to nowcast 

the spatial distribution of solar irradiance around the ASI’s location. Two ASIs located at a 

distance of usually less than 6 km can be combined into an ASI-pair to measure CBH. However, 

the accuracy of such systems is limited. For this reason, we developed a method to estimate 

CBH more accurately by the ASI network. The deviations of 42 ASI-pairs located in the urban 

area of Oldenburg were studied in comparison to a ceilometer and characterized by camera 

distance. 

 The ASI-pairs were formed from seven ASIs and feature camera distances of 0.8 to 5.7 km. Each 

of the 21 tuples of two ASIs, formed from seven ASIs, yields two independent ASI-pairs. For this 

purpose, the ASIs used as main and auxiliary camera respectively are swapped. The deviations 

which were found for the ASI pairs were compiled into conditional probabilities telling how 

probable it is to receive a certain reading of CBH from an ASI-pair given that true CBH takes on 

some specific value. Based on such statistical knowledge, in the inference, the likeliest actual 

CBH is estimated from the readings of all 42 ASI-pairs. 

ASI-pairs with small camera distance (especially if < 1.2 km) are found to be accurate for low 

clouds (CBH < 4 km). In contrast, ASI-pairs with camera distance of more than 3 km provide 

smaller deviations for greater CBH. No ASI-pair provides most accurate measurements under 

all conditions. Overall, the ASI network, which uses ASIs at different distances, provides 

combined measurements of CBH which are more accurate than any of the tested ASI-pairs 

alone. The method and validation summarized at this point is described in more detail in Blum 

et al. (2021). 

3.3.2 Identifying the spatial distribution of cloud attenuation 
In this section the ASI network’s procedure to determine the locations of clouds including their 

height and shape and to assign attenuation to these is described. Such cloud modeling is a 

central subtask in ASI-based nowcasting, in particular if solar irradiance should be predicted 

not only for an ASI’s location but spatially resolved. In comparison to previous ASI-based 

approaches to predict maps of solar irradiance, typically relying on not more than four ASIs 

located in proximity, an ASI network can be expected to increase the accuracy of cloud 

modeling as multiple perspectives on clouds are combined. Previous operational ASI-based 

nowcasting methods (Peng et al., 2015; Nouri et al.,2018) provide a useful and practically 

proofed basis for the present procedure. However, these procedures were not suited yet to 

combine the observations, i.e., maps of cloud parameters, received from very different 

perspectives and with different accuracies. To solve this, a new method was developed. 

As a starting point, sky images are segmented, undistorted, georeferenced and transformed 

into maps of an attenuation index. The attenuation index is introduced as a parameter which 

indicates the presence and the expected attenuation of a cloud for each grid cell. As shown 

in Table 3,  

Cloud class Attenuation index AI 

undefined  n.d. 

low layer/ thick cloud 1 

mid layer cloud 0.7 

high layer/ thin cloud 0.2 

clear sky 0 
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Table 3.  Five cloud classes received from cloud segmentation are mapped to values of the attenuation index AI 

 

Figure 3. The accuracy-weighted merging procedure is shown exemplarily with only two ASIs for 05 June 2020, 

10:22:00. Each ASI delivers a georeferenced map of attenuation index 𝐴𝐼𝑖  (left column); the map of AI from each 

ASI is weighted by 𝑢𝑖
−1 (center column), the inverse of the expected local uncertainty of 𝐴𝐼; the weighted 

average based on 𝐴𝐼𝑖  𝑢𝑖
−1 from all included ASIs yields the merged map of AI. 

cloud classes are provided by the segmentation procedure (Fabel et al., 2022) for each image 
pixel of an individual ASI. These five cloud classes are mapped to one of five values of 

attenuation index which range between zero and one. The maps of the attenuation index 

received from multiple ASIs are then combined to receive a more accurate map of the 

attenuation index. ⋅  

From the principles of error propagation, it is expected that multiple observations, i.e., maps of 
cloud properties, merged by accuracy-based averaging are significantly more accurate than 

the most accurate of those observations alone. Based on these considerations, ASIs are placed 

at distinct points in and around Oldenburg and are included in the dedicated merging 
procedure as follows. First, the sources of uncertainty in the maps of the attenuation index are 

determined. As sources of uncertainty, perspective errors and segmentation errors are 

considered. Further, a base uncertainty is included which accounts for other less dominant 
sources of errors. Based on the local uncertainty of the single ASIs’ maps of the attenuation 

index, the merging procedure assigns a weight to the grid cell of each map and averages the 

weighted maps as summarized in Figure 3. This merging procedure can be adapted for various 

parameters related to clouds such as cloud velocity, DHI and attenuation index.  

Consecutively, a statistical procedure is applied to self-calibrate the relationship between the 
merged map of attenuation index and cloud attenuation. For this purpose, from the DNI 

measurement of RSI station DON and by an estimation of clear sky DNI, cloud attenuation is 

determined. 

Both steps were developed also to incorporate a sky-image-based classification of cloud types 

more adequately than done by previous methods. By this, cloud attenuation is modeled with 

a finer graduation. 
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3.3.3 Spatial variability of diffuse irradiance 
In ASI-based nowcasting systems diffuse horizontal irradiance (DHI) is frequently measured in a 

single point by a measurement instrument such as a sun tracker or a rotating shadowband 

irradiometer which supports the nowcast. DHI is then assumed to be spatially homogeneous 

and persistent over the forecasted lead times (e.g. Nouri et al., 2020b). This simplification can 

induce errors to the nowcast. Additionally, such measurement instruments increase the costs 

of nowcasting systems. To avoid these shortcomings, we developed a procedure which 

measures DHI based on the image of an   

 

Figure 4. An exemplary map of DHI in the urban area of Oldenburg on 10 July 2020 13:00:00 (UTC) is shown. RSI 

station DON (×) and all ASIs in the urban area (⋄) provide a measurement of DHI to the nowcast. The RSIs at 

UOL and CLO (∘) are used as references for the validation. 

all-sky imager and an external source of global horizontal irradiance (GHI) or direct normal 

irradiance (DNI). GHI can for example be received from a regular thermopile pyranometer. This 

measurement technique was developed and validated at two sites in Spain and Germany. 

Our results indicate that the measurement technique can be applied at both sites. DHI is 

measured significantly more accurately than reported in previous works using an ASI alone for 

the measurement of DHI.  This method and the validation are described in more detail in Blum 

et al. (2022). 

The ASI-based measurement of DHI is applied to every ASI in Eye2Sky. This measurement is 

available at each of the numerous ASI stations. The inclusion of all ASI stations instead of only 

the meteorological stations in the analysis of DHI increased the number of locations in which 

DHI was available from 3 to 12 in the urban area of Oldenburg and from 7 to 23 in the whole 

area of Eye2Sky, at the time of the experiments. While the number of stations will increase in 

the future, the ratio of meteorological stations and regular ASI stations will remain similar. During 

nowcasting, the DNI used in the correction of the ASI-based measurement is received from the 

analysis of DNI.  

By the procedure described in Section 3.3.2, point-wise measurements are merged into a map 

which covers the area of Eye2Sky. Both, ASIs and RSIs, can provide point-wise measurements 

of DHI. In this study, only the RSI at DON is included in the nowcast. All other RSIs are excluded 

from the nowcast and used only for validations. For this study it was necessary to reserve 

radiometers which are only used for validations. However, in the future, the nowcast accuracy 
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of DHI and also DNI and GHI can be improved if all radiometers of Eye2Sky are included in the 

calibration of the ASI-based measurement of DHI and also in the nowcast. Further, each ASI 

station could be equipped with a thermopile pyranometer adding only moderate costs. We 

expect that this enhancement would allow to nowcast maps of DHI and GHI at highest 

accuracy. Figure 4 shows an exemplary DHI map for the urban area of Oldenburg. Notable 

variations of DHI are visible in this map which could not be resolved by a single measurement 

of DHI or by the state-of-the-art ASI pair. The quality of the ASI-based measurement of DHI is not 

expected to reduce significantly at an increased distance between the respective ASI and RSI 

station DON. The newly developed ASI-based prediction of DHI will therefore be even more 

advantageous at larger distances from the urban center, i.e., in the rural area of Eye2Sky. 

 

3.3.4  Estimating cloud velocity and tracking clouds 
The individual ASIs included in the ASI network determine the angular cloud velocities in eastern 

and northern direction by the procedure of Nouri et al., 2019a. Each individual ASI delivers an 
orthoimage of the angular cloud velocities consisting of 3 × 3 zones. For each zone and both 

directions, an average angular velocity is provided. Using the local CBH, each orthoimage of 

the angular velocity is converted into a map of cloud velocity. The angular velocity in each 
grid cell of the ASI-based orthoimage is mapped to the grid cells of a georeferenced map. The 

angular cloud velocity in each grid cell of the map is then translated into the absolute cloud 

velocity by the relationship used by Wang, Kurtz, and Kleissl, 2016. The maps of cloud velocity 
from all ASIs are merged into a single map by the merging procedure developed in Section 

3.3.2. However, the uncertainty terms are different in this case. By these steps, one map of cloud 

velocity is determined for the cloud velocity in eastern and one for the cloud velocity in 

northern direction. In the georeferenced maps, each grid cell has a size of 50 m × 50 m. 

With the large number of included ASIs, in large parts of the urban area, cloud velocities from 

multiple ASIs are merged. This is expected to reduce the uncertainty of the cloud velocity 
information. Additionally, the merged map of cloud velocity covers a larger area compared 

to a single ASI or an ASI pair. The merged map of cloud velocity can still exhibit gaps for which 

no data are available. These gaps are filled by inward interpolation assuming that cloud 

velocity is smooth within these zones. 

The maps of cloud velocity cover the whole nowcasted area. We then follow the concept, 
that every particle of a cloud is transported by the velocity field which is described by the maps 

of cloud velocity. This concept is seen as a refinement of previous approaches (e.g., Nouri et 

al., 2019a), which determined a single velocity for each cloud and set it constant for all 
forecasted lead times. In the present model, particles within a single cloud can have different 

velocities. This can cause clouds to unite, to decompose or to change their shape. Additionally, 

cloud particles can change their speed and direction of motion over the forecasted lead times 
even though the maps of cloud velocity are static in our model. The tracking procedure can 

be applied to any parameter which is given as map and which is expected to move along the 

clouds’ velocity field. In the present nowcasting procedure, these tracked parameters are DHI 

and cloud attenuation.  

 

3.4  Results and Discussion 

3.4.1 Benchmarking the overall performance 
In the first step, the ASI network’s overall performance for GHI nowcasting is assessed. ASI pair 

DON-FLE and persistence based on RSI station DON are used as reference nowcasts in the 

benchmark. 
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The deviations metrics RMSD, MAD and bias are used to summarize the nowcasting 

approaches’ uncertainty for GHI nowcasting at the sites DON, UOL, CLO. This is shown in Figure 

5. At all reference stations, the ASI network delivers clearly more accurate nowcasts of GHI, in 

terms of RMSD and MAD, compared to both the ASI pair DON-FLE and persistence. This finding 

holds for all forecast lead times at the stations UOL and CLO and for all lead times greater than 

1 min at DON. Depending on the evaluated station, the ASI network reduces RMSD by 23-30% 

(35 − 50 𝑊/𝑚2), 15-21% (25 − 37 𝑊/𝑚2), 12-16% (20-27 𝑊/𝑚2), 8-12% (14 − 21 𝑊/𝑚2) over 

persistence at evaluated lead times of 5, 10, 15, 20 min. The ASI pair’s advantage over 

persistence in terms of RMSD and MAD depends strongly on the evaluated location and 

forecast lead time. At lead times of more than 5 − 17 min, depending on the location and 

metric, the ASI pair does not reduce the deviations over persistence. Additionally, the ASI pair’s 

RMSD and MAD are comparably large at CLO which is located roughly 3.8 km to the south of 

the two ASIs. These effects are explained by the limited field of view of the ASI pair’s ASIs. 

Frequently, the ASI pair’s field of view is too small to observe the clouds at forecast instance 

time (i.e. at the timestamp based on which the forecast is created) which are at the evaluated 

location at the forecasted time. In these cases, the ASI pair uses an auxiliary technique which 

is comparable to persistence. In comparison, the ASI network’s advantage over the ASI pair 

and persistence reduces only moderately for lead times up to 15 min. This is reasonable due to 

the ASI network’s increased spatial coverage.  

As to be expected for a sufficiently large data set, persistence has a bias close to zero at all 

sites and for all lead times. The ASI pair performs in general as expected from prior validations 

(see e.g., Nouri et al. 2021, non-hybrid ASI-based nowcast). For the overall data set with its 

challenging atmospheric conditions and typically rather low sun elevations, a certain small 

advantage over persistence is found in terms of RMSD and MAD. The conditions under which 

also the ASI pair has a clearer advantage over persistence are analyzed in more detail in 

Section 3.4.2. 

The ASI network performs similar in the central location DON and in the peripheral locations, 

UOL and CLO. Only, at lead times of up to 3 min, RMSD and MAD at UOL and CLO are much 

larger than at DON. This effect is mostly explained as RSI DON is used to estimate local cloud 

attenuation. This causes a local correction of the nowcast at DON. At lead times of more than 

3 min, the RMSD shows a similar behavior at all sites. After the first minutes, those local 

adaptations can be expected to be of smaller relevance. Still, the area around DON is 

monitored by the largest number of ASIs. Therefore, most accurate nowcasts are received in 

the center of the ASI network. On the other hand, the deviations of the ASI network’s nowcast 

are only moderately larger at UOL and CLO compared to DON. This supports the assumption 

that the ASI network’s cloud modelling and DHI modelling procedures are suited to represent 

the whole urban area. So far, only a single ground-based measurement is included in the 

nowcast. This way, a sufficient number of meteorological stations was reserved for validations 

only. For applications, the measurements from all radiometers and possibly also from distributed 

PV installations can be included to adapt the local nowcast of GHI. This will clearly improve the 

ASI network’s accuracy in these locations, making them comparable to DON. 
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Figure 5. Deviations of the ASI-network-, ASI-pair- and persistence-based nowcasts of GHI for the locations DON 

(top), UOL (middle) and CLO (bottom) are evaluated over the 92-days validation dataset and are characterized 

by the metrics RMSD, MAD and bias. 
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3.4.2  Investigating the influence of DNI variability on 

nowcasting performance 
Deviation metrics can vary strongly depending on the local climate. The influence of these 

conditions on the nowcast errors of ASI pair and ASI network is analysed in the following. This 
section investigates the narrowcast’ RMSDs separately for eight DNI variability classes. These 

classes represent distinct meteorological conditions regarding DNI variability and also 

regarding the typical cloud coverage. 

The 92-days test set is now divided into the eight DNI variability classes. The classification was 

already used in prior validations of the ASI pair (Nouri et al., 2020b; Nouri et al., 2019c). The 

meaning of the variability classes is summarized in Table 4.  

All nowcasts, which are created based on a certain forecast instance time, are classified 

based on the DNI measurements of RSI DON within the 15 min which precede that forecast 

instance time.    

Variability class Sky conditions DNI clear sky index Variability 

1 mostly clear 

sky 

very high low 

2 almost clear 

sky 

high low 

3 almost clear 
sky 

high/ intermediate intermediate 

4 partly cloudy intermediate high 

5 partly cloudy intermediate intermediate 

6 partly cloudy intermediate/ low high 

7 almost 
overcast 

low intermediate 

8 mostly 

overcast 

very low low 

Table 4.  This table summarizes the sky conditions indicated by each of the eight DNI variability classes 

according to Nouri et. al. 2021. 
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Figure 6. The RMSD of the ASI-pair- and ASI-network-based GHI nowcast for DON is plotted over the lead time 

for each of the eight DNI variability classes. The present DNI variability class is determined from the DNI 

measured by RSI DON in the 15 min preceding the respective forecast instance time. 

Figure 6 shows the corresponding evaluation for DON. Qualitatively, the ASI pair’s performance 

at DON matches the one found by Nouri et al. (2021) for the same system (non-hybrid ASI-

based nowcast) at a different site. In particular, the performance of the ASI pair in relation to 

the performance of persistence is reproduced for the largest part. 

In the classes 3 – 8, the ASI network’s nowcast for DON outperforms the ASI pair clearly. Only in 

the variability classes 1 and 2 the ASI network’s advantage is smaller. Variability classes 1 and 

2 represent conditions with clear sky and sporadic optically thin clouds. In these classes, at lead 

times greater than 15 min, both approaches perform similar. The ASI network outperforms 

persistence clearly in most classes and at most lead times. The ASI network has the largest 

advantage (by up to 36% and up to 75 𝑊/𝑚2) over persistence in the most variable classes 4, 

6 and 7, in which persistence yields large errors. Both ASI-based approaches are outperformed 

by persistence for variability classes 1, 2. This effect was to be expected as the persistence 

nowcast is well suited for steady conditions. Still, in classes 1 and 2, the magnitude of the RMSD 

is comparably small for all tested approaches. Besides DON, the nowcasts‘ RMSDs were also 

evaluated at station UOL. UOL with its comparably large distance of 3.8 km from RSI station 

DON represents the periphery of the urban area. Qualitatively, the evaluation for UOL showed 

the same effects as the one for DON. In most classes, the ASI network’s advantage was even 

more pronounced compared to DON. 

In summary, this evaluation indicates that the ASI network reduces the nowcast’s RMSD 

compared to the ASI pair and compared to persistence in classes 3-8. Only in classes 1 and 2 
ASI pair and ASI network perform similarly. In these classes, the ASI network’s RMSD is up to 35 
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W/m2 larger than the one of persistence while the RMSD values of all nowcasts are comparably 

small in these classes. 

 

Figure 7. This map shows the transformer district (orange solid shape) for which average GHI is nowcasted in 

Section 3.4.3. RSI DON (×) provides the reference measurements. The modeled transformer district is imaginary 

but has the same shape as a real transformer district in the center of Oldenburg (blue dashed shape). 

(background © OpenStreetMap contributors 2022. Distributed under a Creative Commons BY-SA License.) 

3.4.3  Nowcasting errors at increased lead times 
In the following, the errors of the ASI network’s nowcast at higher lead times of up to 130 min 

are investigated. In particular, this section examines the ASI network’s advantage over 

persistence. In the year 2020, in which the experimental data was acquired, a maximum of ten 

ASIs from the rural area was available for nowcasting. This leads to the following restrictions for 

the present evaluation. Increased lead times of e.g., one hour can only be forecasted under 

certain conditions with cloud motion from certain western directions. Also in these cases, the 

nowcast is frequently only available for specific lead times as the clouds need a specific time, 

which depends on their speed, in which they are transported from the point of observation to 

the urban area. For this evaluation, a subset of the 92-days-validation data set (see Section 3.2) 

is used. This subset contains 25 days on which clouds move in the specific directions for which 

high forecast lead times can be covered in theory. As before, timestamps are only evaluated, 

if the ASI network provides a valid nowcast for them. 

In the evaluations up to this point, it has become visible that variations of GHI are nowcasted 

less accurately at higher lead times. Therefore, this section intends to validate aggregated GHI 

which is relevant in a distribution grid application and is less prone to that source of error. From 

the ASI network, I therefore evaluate nowcasted GHI averaged over the transformer district 

shown in Figure 7 (orange solid shape) and over a time span of 5 min. 5-min-average GHI 

measured by RSI DON (blue cross) is used as reference. 

RSI DON is located in the center of this transformer district. A similar validation approach is often 

used for satellite-based or NWP forecasts. A persistence nowcast using the measurements of 

RSI DON serves as benchmark. The modeled transformer district is only imaginary. It has the 

https://www.openstreetmap.org/copyright
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same shape as a real transformer district located in the center of Oldenburg (blue dashed 

shape in Figure 7). The transformer district was shifted for this evaluation so that its geometric 

center coincides with the location of RSI DON. No actual aggregated GHI or PV production 

data are available for this validation. Therefore, this shift aims to increase the comparability of 

nowcast and reference measurement.  

 

Figure 8. Deviation metrics RMSD (∘), MAD (⋄) and bias (+) are plotted for the persistence nowcast (blue) and 

for the ASI network nowcast (red). Unlike Figure 5, this evaluation is restricted to 25 days but covers lead times 

of up to 130 min. The deviation metrics evaluate 5-min average GHI from RSI DON and 5-min average GHI 

aggregated over the area of the transformer district shown in Figure 7. 

Figure 8 summarizes the resulting deviation metrics over the lead time. The ASI network 

outperforms persistence in terms of MAD and RMSD at lead times of 3 min to 95 min. In this 

range of lead times, the ASI network reduces the RMSD by up to 21% and up to 25 𝑊/𝑚2 over 

persistence. As to be expected, persistence yields a negligible bias. The ASI network’s nowcast 

has a moderate negative bias with a magnitude of less than 20 𝑊/𝑚2 . 

This validation indicates a certain advantage of the ASI network over persistence. Further, the 

validation may overestimate the deviations of the ASI network’s nowcast. The nowcast 

provides spatially averaged irradiance, whereas only a pointwise measurement is available as 

reference for the validation. To some extent, this difference in the definition of the compared 

parameters can explain the deviations which were found. 
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4 Highly resolved combined ASI network, satellite 

forecast and NWP forecast  

4.1  Motivation 
A typical urban distribution has an extent around 100 km². Inside such an area, multiple 

photovoltaic (PV) roof size systems (of around 20kW) and occasionally also mid-range size 

systems (~MW) can be found. The accumulation of these type of systems in such a relatively 

small grid poses a threat to the grid’s stability, mainly due to the intermittent nature of the power 

generation. To ensure grid stability, an accurate intra-day PV power forecast is needed. At the 

same time, accurate short term PV power forecasts are vital for the stakeholders that bid on 

electricity markets.  

Nowadays, PV power forecasts are usually estimated using satellite and/or NWP irradiance 

forecasts. These forecast sources present the advantage of a high spatial and temporal 

coverage with the detriment of low temporal and spatial resolution. By the contrary, the newly 

developed ASI network forecast (see Section 3) is able to predict highly resolved irradiance 

forecasts on a local domain that matches quite well the typical distribution grid extent. At this 

scale, we are interested on finding a method to combine these highly heterogeneous forecast 

sources into a single hybrid forecast. The main idea is to assimilate the most relevant information 

of each source to produce a forecast with an increased accuracy metrics for the lowest 

temporal and spatial resolutions available.  

4.2  Case studies 
In order to produce and benchmark the newly developed combined forecast, we will use the 

following forecast sources in this study: 

• DLR VE’s operational satellite based forecast (sat): This method uses the raw images 

from a satellite (Meteosat Second Generation or MSG) to generate a Cloud Index (CI) 

image using the methods developed in (Hammer et al., 2015a),  (Hammer et al.,  2015b) 

and (Eumetsat, 2012). Using 2 consecutive CI images, Cloud Motion Vectors (CMVs) are 

calculated and used to extrapolate the CI into the future. This forecasted CI images are 

then used to calculate the irradiance value for every pixel. This is done by multiplying 

the forecasted CI values with irradiances derived from the Durmotier clearsky model 

(Dumortier, 1995) using the climatological turbidity values from (Remund., 2009). As the 

satellite takes one images every 15 min, the forecast has an update frequency and a 

forecast resolution of 15 min. 

• ASI network forecast (ASInet): This forecast was developed on the DLR’s Eye2Sky 

network (see Section 3.3) and it is fully described in the Section 3.3 In essence, the ASIs 

on this network are used to derive a segmented cloud mask, the cloud height and 

cloud speed. Then the cloud mask images are used to derive the CMVs, which are then 

used to extrapolate the cloud mask into the future. Finally, ground observations are 

overlaid on the cloud masks to derive irradiance maps. An intelligent combination of 

the high spatial density of ASIs (29 in 100k m2 area) allows to extend the spatial and 

temporal coverage compared to a single ASI system. The ASIs on the network produce 

images every 30s. This allows the forecast to have an update of 30s using a forecast 

resolution of 1 minute. The forecast horizon varies depending on the position of the pixel, 

cloud height and the wind conditions. It ranges from 10 min to 60 min.  

• Satellite + ASI network combination (sat+ASInet): In this study the we have developed 

a method to combine these highly heterogeneous forecast inputs. This is done to 
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improve the  performance by taking advantage of the strengths of the individual 

forecasts. In essence, the forecast inputs are first homogenized in space and time. Then, 

historical forecasts are used to optimized the coefficients on the linear combination of 

the forecast inputs. Once the optimized coefficients are found, the actual forecasts 

(present) are combined using the optimized weights. The temporal resolution of the 

combined forecast is 1 min and the forecast horizon is 30 min. This method is explained 

in detail in Section 0.  

• Satellite Persistence (sat_persis): This forecast is also based on the Heliosat 3 method. 

The difference to the satellite forecast is that the extrapolation is done using CMVs that 

are equal to 0. That is, as if the clouds did not move in time (note that the sun position 

does move in time). This forecast is used as baseline to be compared to the other 

forecast inputs as all forecasts should improve the long term performance over 

persistence. The temporal resolution and horizon of the forecast are the same as for the 

satellite forecast equal to 15 min. 

 The data available for the forecast combination is described on Table 5. 

Parameter Satellite  ASI network  High res. Arome NWP  

Spatial resolution  1 km 50 m 1 km 

Extent Satellite view 40 km x 40 km 

(centred in 

Oldenburg city) 

Central Europe 

Product projection geostationary Transverse 

mercartor 

Plate Carree 

Forecasts update 15 min 30 s 15 min 

Forecast step 15 min 1 min 5 min 

Forecast horizon 8 h 30 min 51 h (from run at 21:00) 

Availability Operational 

since begin 

2020 

01.07.2020 -  

31.08.2020 

01.02.2020 -  

31.03.2020 

Parameter GHI GHI DSSR 

Type Deterministic Deterministic Probabilistic  

(25 members) 

Provider DLR DLR Meteofrance 

Table 5. Available forecasts 

The satellite forecast has been operational at DLR since the beginning of 2020, so there is no 

limit on its data availability. Having in mind solar power interests, the runs for the ASI network 

forecasts were processed on the DLR cluster for a range of 2 months in summer 2020 (July and 

August 2020). From the Arome model, the processing of the high-resolution NWP forecast was 

done for 2 summer months of 2019 (July and August 2019) and 2 winter months of 2020 

(February and March 2020). For the Arome’s processed summer months (July and August 2019) 

it was not possible to process an accurate ASI network forecast due to the low number of 

cameras installed at the time. The Arome’s winter months data are of low interest when 

developing an algorithm for solar irradiance forecast. A new run of the Arome model for the 

months July and August 2020 is not possible due to the hardware (full daily run ~= 12 TB of 

storage) and personal resources needed for such a task. In this context, and having in mind 

the solar power application, we have decided to work with the summer months of 2020 using 

Satellite and ASI network forecasts. From the available data, this combination is a more sensible 

choice  as it involves, at the same time, the high spatio-temporal resolution localized data (ASI), 

the averaged hourly information on the region (SAT) and high irradiance months (summer). 



D2.3. Methodologies for short-term solar resource forecasting 
by merging various inputs  

 
 
 

28 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

Accordingly, for the time being, the Arome NWP model could not be taken into account on 

the developed combination.  

The evaluation of the chosen combined irradiance forecast sources is performed with the 

dataset # 1, defined in the Smart4RES Data Management Plan as the “NorthWest 

meteorological measurement network & PV plants”. This dataset is based on the measurements 

from the DLR’s Eye2Sky network, shown in  Figure 2. 

As reference ground data 4 meteorological stations from the Eye2sky network are taken: 

OLDON, OLCLO, OLUOL, PVAMM. These are the reference stations available inside the extent 

of the ASI network forecast. The description of the validation ground dataset is shown in Table 

6.  

Data type Parameter  Locations Start End Duration filtering 

Training  GHI OLUOL, 

OLDON 

Forecast  

instance - 30 days 

Forecast 

instance  

1 month Solar 

elevation 
> 20° 

Validation GHI  OLCLO, 

PVAMM 

2020-08-01 2020-08-31 1 month Solar 

elevation 
> 20° 

Table 6.  Validation ground dataset 
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4.3  Methodology 

4.3.1 Description 
In order to combine the different forecasts sources, we have developed the method depicted 

in Figure 9. 

 

Figure 9. Combination model 

The developed model is composed of 3 different blocks: homogenization, regression and 

prediction. In the homogenization block the forecast inputs are all converted into to the same 

spatio-temporal resolution. This process depends on the type of data needed (timeseries or 

maps). Once this homogenization is done, historical forecast timeseries are fed into the 

regression block. The number of timeseries used depends on the number of sites available with 

ground irradiance measurements. In this step, the historical forecasts are used as features and 

the ground measurements are used as samples (references) of a linear regression. The cost 

function of the regression is the linear combination of the forecast inputs. The more historical 

data is used, the more constraints and complexity are added to the system regarding the 

meteorological conditions. If too few days are used, the system will not have sufficient 

information to indirectly characterize the prevailing local atmospheric conditions (e.g., 

prevailing sky condition, aerosol content). If too many days are used, the regression will tend 

to overfit the prevailing conditions. The regression will output the optimum weights that each 

of the input sources will have plus a bias correction term. One regression will be performed 

independently per lead time. This means that for every forecast instance processed, there will 

be NS regressions performed, where NS is the number of forecast steps selected for the output 

of the combined forecast. In our specific case NS = 30 (1 forecast lead time per minute for 30 

min). The regression block will output NS x NF + NF optimal weights, where NF is the number of 

forecast inputs combined (2 in our case). The “+NF” term accounts for the bias terms. Finally, 

the optimal weights found are used on the prediction block to combine the input present 

forecasts (and not historical). Here the combination can be indifferently applied to timeseries 

or maps. At the end of this process, we get the hybrid forecasts with the chosen spatial and 

temporal resolutions. In the following subsections a detailed description of the 3 model blocks 

is presented.      
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4.3.2  Forecast homogenization 
In the forecast homogenization block, all forecast inputs are converted into a common spatial 

and temporal resolution. Here below we describe the different processes used on this 

homogenization step.  

Spatial homogenization: when working with maps, first a projection and a spatial grid for the 

hybrid forecast must be chosen. In a first step, all data inputs are converted into the hybrid 

projection. Then the data is interpolated (to higher resolutions) or averaged (to lower 

resolutions) into the chosen hybrid spatial grid. Here the interpolation methods vary depending 

on the source forecast converted. When working with timeseries, the sites (coordinates) of 

interests are directly interpolated in the original forecast source projection and outputted 

directly to the other blocks of the model. In this work, we trained the linear regression weights(?) 

and validated the forecasts(?) using these timeseries. 

Temporal homogenization: when working with different forecasts, there are 2 different 

temporal resolutions that could differ, the forecast update resolution (between 2 forecast 

instances) and the forecast step (between 2 forecast lead times). These types of interpolations 

are exemplified in Figure 10. 

    

Figure 10. Forecast step and forecast instance interpolations. 

In the method developed here, a linear interpolation within the last available forecast instance 

on the respective source is used to interpolate both interpolation types. This is quite straight 

forward for the forecast step interpolation but a little less intuitive for the forecast instance 

interpolation. All forecasts will have missing forecast instances with respect to the higher 

resolved one. In order to interpolate a missing instance, from the last available forecast 

instance the missing instance and all subsequent missing lead times are linearly interpolated. 

With this method the last interpolated lead time will be undefined as it will be a point outside 

the forecast horizon of the last available forecast instance. With the data available on this 

method, we found that this is the most accurate approximation of the unknown forecast 

instances.       

4.3.3  Regression and prediction 
Once the forecasts are homogenized, we can proceed to define the combined forecasts per 

lead time as the linear combination of the inputs forecasts sources, that is: 

𝐶 =  ∑ (𝑎𝑛  · 𝐹𝑛

𝑁−1

𝑛=0
 ) + 𝑏 |

per leadtime

  

Where : 
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C = combined forecasted product  

Fn = Input forecast source n  

an = weight for forecast source n  

b = bias term 

N = number of input forecast sources 

The basic principle is then to find the optimum weights an and b per lead time that minimize 

the squared error of this linear combination of forecasts using as reference the GHI measured 

with the ground measurement stations (linear regression). Here we see that the training is not 

performed on forecast maps but on forecast timeseries as the reference data does only exist 

on point-wise basis. In order to include indirectly the inertia of the local atmospheric conditions 

(e.g., aerosols), a fixed period d of historical forecast days is used on the training. The training 

can then be defined per lead time as   

min (∑ (𝑎𝒏  · 𝐹𝑛̅) 
𝑁−1

𝒏=0
+ 𝑏 − 𝐺𝐻𝐼 ̅̅ ̅̅ ̅̅ )  |

per leadtime

  

 Where: 

𝐹̅n = array of forecasted pixels for source n of length d · s  (features) 

𝐺𝐻𝐼̅̅ ̅̅ ̅ = array of GHI measurements of length d · s  (samples) 

d = number of historical days 

s = number of available measurement sites 

an = weight for forecast source n  

b = bias term 

N = number of input forecast sources 

Form the regression we obtain the optimized weights an and optimized bias term b per lead 

time. 

Once the training phase is done, we can proceed with the linear combination of the present 

forecasts per lead time using the optimized weights an and optimized bias term b. As a result, 

we obtain a unique combined forecast with the highest temporal and spatial resolutions. These 

optimized coefficients can be either applied map-wise or point-wise, so the output of the 

combination can be either forecasted maps or forecasted timeseries. 

4.4  Evaluation 
The sources combined in this evaluation are the Satellite and ASI network forecasts. These 2 

sources are jointly available from the 01.07.2020 to the 31.08.2020 (see Table 5). The training of 

the regression was performed using 2 sites on the Eye2Sky network, OLUOL and OLDON (see 

Figure 2 and Table 6). The regression was performed with a historical forecast dataset of 30 

days. This time range was found to be the period in which improvement of error metrics were 

maximized, as shown also in Kühnert, J., 2016. Due to this, the first forecasted day from the 

combined method is the 01.08.2020 and the last is the 31.08.2020. The characteristics of the 

obtained hybrid forecast are shown in Table 7. 

  



D2.3. Methodologies for short-term solar resource forecasting 
by merging various inputs  

 
 
 

32 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

Parameter Combined  Satellite + ASI network 

forecast  

Spatial resolution  Evaluated directly on time series 

Forecasts update 1 min 

Forecast step 1 min 

Forecast horizon 30 min 

Availability 01.08.2020 to 31.08.2020 

Parameter GHI 

Type Deterministic 

Table 7. Characteristics of the obtained Satellite + ASI network forecast. 

The validation of the hybrid forecast was performed using the sites OLUOL and OLDON (see 

Figure 2) with the forecasts obtained from 01.08.2020 to 31.08.2020. The error metrics used on 

this evaluation are the Root Mean Squared Error (RMSE) and Mean absolute Error (MAE). The 

KPI used for this task is the KPI1.1.a : 10-15% RMSE improvement up to 30 min ahead (see 

complete list of projects KPIs in Appendix A).    

 

4.5  Results and Discussion 

4.5.1 Benchmarking of the input forecasts on the Eye2sky 

region 
To set the basis for the validation of the combined forecast, we first study the performance of 

the individual input forecasts on the Eye2sky domain. Figure 11 shows the validation of the 

satellite forecasts on the 2 summer months of the study (01.07.2020 to 31.08.2020). Here, we 

have used all the available ground measurement stations of the Eye2Sky network.  

 

Figure 11. Validation of the satellite forecast on the Eye2sky domain. (01.07.2020 to 31.08.2020)  

In this figure we see the absolute MAE and RMSE for the 8 hours lead time every 15 min. Results 

are shown for the individual stations (dashed lines) and for the aggregation of all station 

together (thick solid line). By aggregation here we mean aggregating all the irradiance values 

together and then determine the RMSE. As a reference we also include the aggregated 

satellite persistence (thick dashed line). First, we see that for all stations individually and the 
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aggregated values, the RMSE and MAE of the satellite forecast improves compared to 

persistence for most of the lead times. The best improvement for the aggregated on MAE is 

13.19 W/m2 and on RMSE is 23.39 W/m2 on the lead time 5h45m. Only for the very low lead times 

this is not the case as persistence is usually the best forecast in this case. The error metrics for 

the lower lead times (~78 W/m² for MAE and ~110 W/m² for RMSE) are expected and 

comparable with other type of satellite forecast methods (Polo, J., 2008). In the parenthesis 

under the lead times we see the amount of valid points used to calculate the error in each 

lead time. We see that the available data decreases with lead time, mainly due to fact that 

as lead time increases, the probability of night values increases as well. We also see that for 

high lead times the errors tend to improve (decrease) which is counter intuitive. This is an artifact 

that comes from the fact that at high lead times we find a high probability to be on the 

afternoon irradiance values. These irradiance values are small, so the probability to have an 

error decreases when validating these low values. To avoid this, we also show the relative error 

metrics in Figure 12. In this figure we see the expected behaviour of a forecasts in which the 

error metrics increases with lead time. The find as before a maximum improvement  on lead 

time 5h45m of 6.97% for MAE and 12.37% for RMSE. These values set up the reference to which 

we can compare the other forecasts. 

 

 

Figure 12. Validation of the satellite forecast on the Eye2sky domain using relative error metrics. (01.07.2020 to 

31.08.2020) 

We now continue with the validation of the ASI network irradiance forecast in the 40 km by 40 

km extent around Oldenburg area (see Table 5) on the same 2 summer months. This validation 

is shown in Figure 13. Here we can only use the 5 ground measurement stations inside the ASI 

network forecast extent. First, we see that for the lower lead times, the MAE (~54 W/m²) and 

the RMSE (~100 W/m²) of the ASI network forecasts show already an improvement to the 

satellite forecast for the same test case (improvement of 21.78 W/m2  for MAE and 7.4 W/m2 for 

RMSE) . Also we see that the errors for the station OLDON are quite low. This is because the 

irradiance values from this station are used as part of the irradiance estimation of the ASI 

network forecasts (see Section 3.3.2). We also see that for higher lead times, the error metrics 

reach a plateau that seems to stabilize the error on a fix value. This is another artifact also 

caused by missing data. Indeed, the ASI network forecasts are quite limited in extent (40 km x 

40 km) and have no information of the cloud situation outside its boundaries. So when the 

clouds move through and out of the forecast extent with no information coming in from the 
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outside, some pixels are left with undefined values. As lead time increases, so does the amount 

of undefined pixels in the forecast extent. 

 

Figure 13. Validation of the ASI network forecast on the Eye2sky domain (01.07.2020 to 31.08.2020). 

This is exemplified for an extremely unfavourable case in Figure 14. Here we have a situation 

with low clouds under strong Southwest wind. For lead time 0, we see that all 5 station pixels 

have a defined irradiance value. As lead time increases, the clouds (irradiance information) 

move rapidly towards the Northeast. At lead time 14, 2 stations are already outside the validity 

domain. At lead time 20, all measurement station pixels are outside. This means that from 

minute 20 onwards all points of interest in this test case will be undefined.  

 

Figure 14. Undefined values encountered on the ASI forecast domain for an extremely unfavorable case (low 

cloud height with strong winds). 

In order to avoid this artifact on the ASI forecast, the points that are left undefined are filled 

with a type of persistence that takes partly into account the variability of the situation. This 

persistence is defined as: 

𝐺𝐻𝐼[𝑖𝑑𝑥𝑛𝑎𝑛]  =  𝑚𝑒𝑎𝑛(𝐺𝐻𝐼[~𝑖𝑑𝑥𝑛𝑎𝑛]) 

were 𝑖𝑑𝑥𝑛𝑎𝑛 are the indices of the forecast pixels where the GHI value is left undefined.  
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4.5.2  Benchmarking of the combined Satellite + ASI 

network forecast on the Eye2sky region 
 

For the benchmarking of the combined Satellite + ASI network forecast, we compare the 

different error metrics of this new developed forecast with the ones found for the satellite 

persistence, satellite, and ASI network forecasts. These results are shown in Figure 15. 

  

Figure 15. Benchmark for the combined forecast on the nominal synchronization case. Top: Error metrics 

RMSE(○) and MAE(♢). Bottom: average optimized combination weights(x) and optimized combination bias 

term (△ ) in the secondary axis.  

In this figure we see that as expected the satellite persistence and satellite forecasts present a 

low variability on this relative short lead time (30 min) and that the satellite forecast always 

outperforms the satellite persistence. On this point, it is quite strange to see that the satellite 

persistence and the satellite forecast error metrics differ from one another on lead time 0. This 

is explained by the interpolation of the missing forecast instances (see Section 4.3.2). If we only 

use the non-interpolated forecast instances (on minutes 0, 15, 30 and 45) we get the expected 

behaviour where both satellite-based forecasts show the same error metrics at lead time 0. All 

other intermediate minute values are interpolated from the last available satellite and satellite 

persistence forecast instances respectively. As the first forecasted value (lead time 15) for both 

sources are different, thus also their interpolations between 1 and 14 minutes. So at lead time 

0, the values for the intermediate forecast instances will be different for each source. Due to 

this, there will be a difference in the error metrics at lead time 0 when computing the metric for 

the aggregation of all (interpolated and non-interpolated) values together. As explained 

before, this is the most accurate approximation of the unknown forecast instances. This 

difference is still small (6.8 W/m² for RMSE and 4.9 W/m² for MAE) and does not affect the overall 

results of the entire benchmark.  
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The satellite forecasts also seem to have a slight improvement between lead times 0 to 15 and 

also again from 15 to 30 (U shape response). This is an artifact that comes from the other type 

of interpolation, the forecast step interpolation (see Section 4.3.2). In this case the interpolation 

has an averaging effect that translates in a slight improvement of the error metrics for the 

interpolated values.  

We see that the RMSE of the ASI network outperforms the RMSE of the satellite forecast until 

lead time 8. This comes from the fact that the ASI network forecast has a much higher spatio-

temporal resolution, which translates into a finer description of the cloud situation. This will result 

into a more accurate estimation of the irradiance at a local level. As explained in the previous 

section, this advantage will be reduced as lead time increases (as clouds move through the 

forecast extent) because no new information from the cloud situation is known outside the ASI 

network extent. This means that on average the cloud information contained in the ASI network 

forecast after 9 min deviates from the real cloud conditions in such a way that it can not 

produce such accurate forecasts anymore. We see that at lead time 30 the RMSE of the ASI 

network and the satellite persistence are very similar. This implies that for this particular case, 

the ASI network forecast will contain valuable cloud information until this limit of 30 min. A similar 

behaviour is found for the MAE with the cross point on lead time 19. 

Looking now into the combined satellite + ASI network forecast, we find a significant 

improvement of the RMSE with respect to both input forecasts. In general, the combined 

forecast RMSE outperforms all forecasts for all lead times, with a maximum improvement of 

10.36 % at lead time 8. Table 8 shows the RMSE per forecast method and the improvements of 

the combination with respect to the individual satellite and ASI network forecasts. From the 

table we see that the RMSE improvement between 5 and 30 min with respect to the satellite 

forecast ranges from 5.07% to 13.97% and with respect to the ASI network from 7.55% to 15.09%. 

Even when we take the lowest improvement per lead time into account against both forecast 

inputs (underlined values), we get an overall improvement that ranges from 5.07% - 10.36% (at 

lead time 8). In any of these 3 cases the improvements for RMSE of 10%-15 % defined on the KPI 

1.1.a are satisfied (See Appendix A for complete list of projects KPIs). 

Leadtime  
[min] 

Sat 
 [W/m²] 

ASInet  
[W/m²] 

Sat+ ASInet 
[W/m²] 

Improvement of  
Sat + ASInet  

over only SAT [%] 

Improvement  
Sat + ASInet  

over ASInet[%] 

0 143.52 108.72 105.16 26.72 3.27 

5 142.71 132.81 122.78 13.97 7.55 

10 144.89 149.45 131.15 9.48 12.24 

15 149.19 158.54 136.74 8.35 13.75 

20 148.59 163.52 139.68 6.00 14.58 

25 150.75 168.38 143.10 5.07 15.01 

30 156.18 172.55 146.52 6.19 15.09 

 Table 8. RMSE per forecast for selected lead times + relative improvement of nMAE of Satellite + ASInet over 

only SAT and only ASInet. The underlined values represent the minimum RMSE improvement per lead time 

taking both forecast inputs into account (worst case improvement)  

The MAE of the combined forecast has a different trend. From Table 9 we see that it has clearly 

improved over the satellite forecast, starting with an improvement of 33.28% down to 1.30% at 

lead time 25. The case is much different with respect to the ASI network forecast, where we 

find an under performance starting with -6.17% that goes until lead time 11. Then the MAE of 

the combination will outperform the ASI network forecast with a maximum value of 6.35% at 

lead time 30. The reason for the different behaviour between the RMSE and MAE is that the 
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combination method itself has been designed to minimize the squared error of the linear 

combination of the input forecasts (see Section 4.3.2). Thus the combination is optimized to 

minimize the RMSE (itself an squared error) and not the MAE (itself a linear error). This choice is 

based on the fact that the RMSE is the most common used metric for the validation of these 

types of forecasts (e.g, RMSE is the metric chosen in the KP1 1.1.a).  

In Figure 15 we also find the average optimized weights per lead time that each of the input 

forecast received on the combination (bottom figure). It is clear that on average the 

combination learned that for lower lead times the ASI forecast information has a higher weight 

(describes more accurately local cloud situation and hence the irradiance values). For this test 

case the ASI forecast will dominate the combination until lead time 9, where the weight values 

cross. From lead time 10 onwards the satellite forecast will provide the highest contribution. This 

shows that the hybrid forecast learns to take advantage of the individual strengths of each 

input forecast, to result in a product that is nearly the best of both worlds. The location of this 

cross point should be site dependent.  

Leadtime  
[min] 

Sat 
 [W/m²] 

ASInet  
[W/m²] 

Sat+ ASInet 
[W/m²] 

Relative Improvement 
of  

Sat + ASInet  
over only SAT [%] 

Relative 
Improvement  
Sat + ASInet  

over ASInet[%] 

0 95.95 60.31 64.02 33.28 -6.17 

5 95.71 76.84 80.22 16.19 -4.40 

10 97.35 88.22 88.56 9.03 -0.38 

15 100.16 95.91 94.55 5.60 1.41 

20 100.20 101.19 97.37 2.83 3.78 

25 101.79 105.98 100.47 1.30 5.20 

30 105.49 110.26 103.26 2.12 6.35 

Table 9. MAE per forecast for selected lead times + relative improvement of nMAE of Satellite + ASInet over only 

SAT and only ASInet. The underlined values represent the minimum MAE improvement per lead time taking 

both forecast inputs into account (worst case improvement)  

As discussed in Section 4.5.1, the ASI network forecast horizon is panellized by low clouds. In 

locations like the Eye2Sky network (North west Germany) which presents a sky dominated by 

low clouds, the ASI network performance decreases rapidly with lead time. This results on a 

minimization of the contribution of the ASI network on the combined forecasts. For locations 

dominated by higher clouds, this cross point should appear on higher lead times. To 

corroborate this effect, the DLR is assessing the possibility of applying the combination method 

on the Plataforma Solar de Almeria, which has 5 ASIs installed on its perimeters.   

Finally, the combination method finds at the same time a bias correction, represented by the 

free term on the linear combination (see Section 4.3.2). The optimized average bias term 

obtained per lead time is shown in Figure 15 (bottom, secondary axis). We see that the bias 

correction ranges from 29.76 W/m² at lead time 0 to 108.06 W/m² at lead time 30. The bias 

correction term also shows the u-shape like response found on the satellite forecast terms. This 

seems to imply that the satellite forecast introduces the highest bias deviation to the combined 

product and that the method itself tries to compensate for this directly on the regression. 
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4.5.3  Benchmarking of the performance of the forecasts 

with respect to the variability condition 
The results in the previous section do not allow a differentiation of the error metric performance 

on the prevailing meteorological conditions (e.g. different cloud situations). In order to achieve 

this, a benchmark of the forecasts on prevailing irradiance variability conditions was 

performed. The variability conditions are here defined by the variability index (VI) developed 

in (Marquez, R., 2013). This variability index is defined as the standard deviation of the clear sky 

index increments 𝛥𝑘∗(𝑡), as  

𝑉𝐼 =  √
1

𝑁
∑ [𝛥𝑘∗(𝑡𝑖)]2𝑁

𝑖=1 =  √
1

𝑁
∑ [𝑘∗(𝑡𝑖  + 𝛥𝑡  ) − 𝑘∗(𝑡𝑖)]2𝑁

𝑖=1   

Where: 

𝑘∗ = clear sky index 

𝛥𝑘∗(𝑡) =  𝑘∗(𝑡 + 𝛥𝑡  ) − 𝑘∗(𝑡)  (clear sky index increment) 

𝛥𝑡 = step of the increment (time difference) 

𝑖 = {0 … 𝑁} = forecast instances taken into consideration in the VI 

 

A closer look to the obtained VI equation evidences that by definition the VI has the same 

formulation of the RMSE of the 𝑘∗ persistence  

𝑉𝐼 =    √
1

𝑁
∑ [𝑘∗(𝑡𝑖  + 𝛥𝑡  ) − 𝑘∗(𝑡𝑖)]2𝑁

𝑖=1 = 𝑅𝑀𝑆𝐸 𝑘𝑝𝑒𝑟𝑠𝑖𝑡𝑒𝑛𝑐𝑒
∗     

as for any change 𝑡𝑖  + 𝛥𝑡 , the persistence forecast will give the value at 𝑡𝑖. Using a VI in terms 

of the clear sky index allows us to dissociate the deviations due to the daily irradiance pattern 

from our metrics.  

For this benchmark, the variability index is calculated using the ground persistence clear sky 

index ( 𝑘𝑔𝑛𝑑
∗ ) on a sliding window of 25 forecast instances (N=25 min/forecast instances) 

throughout the month of 08.2020. The sites used here are the same 2 validation sites, PVAMM 

and OLCLO.   

In Figure 16 the average RMSE of the clear sky index for each one of the benchmarked 

forecasts in terms of VI is shown (VI depicted with bins of length 0.02). In this figure we show the 

performances of the forecasts for an increment step 𝛥𝑡 of 5 min (or lead time 5). First of all, we 

see that per definition, the RMSE of the ground persistence falls exactly in the diagonal. All 

values under the diagonal mean an improvement over ground persistence and vice versa. In 

the secondary index (+) we see the relative cumulative sum of the available points per bin.  



D2.3. Methodologies for short-term solar resource forecasting 
by merging various inputs  

 
 
 

39 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

 

Figure 16. Average RMSE of  𝑘𝑓𝑜𝑟𝑒𝑐
∗  in terms of the variability index (VI) for 𝛥𝑡 = 5 min and N=25 min(bin width = 

0.02). The forecasts shown are ground persistence (⋅), satellite persistence (○), satellite (♢), ASI network (□) and 

combination of satellite and ASI network (△). On the secondary axis the relative cumulative sum of the available 

points (+) 

We see that as the variability increases, so does the RMSE for all forecasts (as expected). The 

difference between the forecasts comes from the steepness of the growth gradient of the 

RMSE. It is important to note that for all VI values >= 0.2, the combination forecast shows the 

lower RMSE compared to all other forecast sources.  

Almost 20% of the points fall directly on the VI=0, which translates to clear sky or overcast 

conditions. For this VI value the ground persistence presents the better performance, that is, a 

negative forecast skill for all forecast sources (which is also expected). The least negative 

forecast skill is shown by the ASI network, followed by the satellite, combined forecast and 

satellite persistence with a very similar value.  

In order to facilitate the comparison with the ground persistence source as a reference, the 

difference between the RMSE 𝑘𝑓𝑜𝑟𝑒𝑐
∗  and RMSE 𝑘𝑔𝑛𝑑

∗  is shown from Figure 17 onwards. For the 

studied increment step (𝛥𝑡 = 5), the combination forecast presents a positive forecast skill from 

conditions with a VI >= 0.2, while for the ASI network, satellite and satellite persistence the values 

are 0.28, 0.28 and 0.38 respectively. This shows that the combined forecasts present the lowest 

average RMSE on high variability situations compared to the individual input forecast sources.  
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Figure 17. Difference of average RMSE  𝑘𝑓𝑜𝑟𝑒𝑐
∗  with the average RMSE 𝑘𝑔𝑛𝑑

∗  in terms of the variability index 

using 𝛥𝑡 = 5 min and N=25 min (bin width = 0.02). The forecasts shown are ground persistence (⋅), satellite 

persistence (○), satellite (♢), ASI network (□) and combination of satellite and ASI network (△). On the 

secondary axis the relative cumulative sum of the available points (+) 

For a more general view of the performance of the combined forecast in terms of variability, 

the same study as before is shown in  and Figure 19 for the increment steps 𝛥𝑡 from 0 to 17 min.  

For the case of 𝛥𝑡 = 0, we retrieve the RMSE found on the analysis case (with no forecast). As 

expected, the best performing source is persistence (RMSE=0) followed by ASI network, 

combined forecast, satellite and satellite persistence. As 𝛥𝑡 increases, the higher variability 

conditions begin to appear. On the case with 𝛥𝑡=1 minute, the variable conditions are found 

only until VI of 0.22. Here still all forecasts show a negative skill (difficult to outperform persistence 

in such a low lead time). At 𝛥𝑡=2, the variable conditions are found until a VI of 0.4 and the 

forecasts begin to show a positive skill, from VI=0.3 for the combined forecast and VI=0.32 for 

the ASI network. The other forecast sources still present a negative skill in such low lead times. 

From 𝛥𝑡=3 to 𝛥𝑡=6, the higher variability conditions start to appear (VI from 0.46 to 0.58) and the 

VI cross points in which the forecasts start to have a positive skill begin to decrease. From 𝛥𝑡=7 

onwards, the performances of the different forecasts begin to stabilize with the most 

performant forecast being the combined satellite + ASI network forecast for variability 

conditions from VI >= 0.16. This higher performance on high variability conditions is one of the 

main research objectives set up in the beginning of this project task. For this test case, it is found 

that from the variability perspective, conditions get stabilized after 7 min. This is also the 

increment step (𝛥𝑡 = 7) in which the high variability dependent errors of the satellite forecast 

equalize the performances of the ASI network (as seen in the 𝛥𝑡 = 7 subfigure in ). This is an 

indication that on average the ASI network forecast is able to contribute to the minimization of 

high variability dependent errors of the combined forecast until lead time 7. After this, it is the 

satellite behaviour that prevails. 
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Figure 18.  Difference of average RMSE  𝑘𝑓𝑜𝑟𝑒𝑐
∗  with the average RMSE 𝑘𝑔𝑛𝑑

∗  in terms of the variability index bins 

(bin width = 0.02) using N=25 min. Each figure represents a value of 𝛥𝑡 from 0 to 8 min. The forecasts shown 

are ground persistence (⋅), satellite persistence (○), satellite (♢), ASI network (□) and combination of satellite 

and ASI network (△). On the secondary axis the relative cumulative sum of the available points (+)  
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Figure 19. Difference of average RMSE  𝑘𝑓𝑜𝑟𝑒𝑐
∗  with the average RMSE 𝑘𝑔𝑛𝑑

∗  in terms of the variability index bins 

(bin width = 0.02) using N=25 min. Each figure represents a value of 𝛥𝑡 from 9 to 17 min. The forecasts shown 

are ground persistence (⋅), satellite persistence (○), satellite (♢), ASI network (□) and combination of satellite 

and ASI network (△). On the secondary axis the relative cumulative sum of the available points (+) 

  

4.5.4  Correlation of increments as a qualitative variability 

measurement 
 

In the previous section we saw how the RMSE behaves on average for different variability 

conditions and that the RMSE of the combination forecast outperforms the other forecasts for 

high variability conditions. Now, on a further step we want to compare the different methods 

in their ability to forecast variations of irradiance (forecast of variability). For this we correlate 

the increments of the clear sky index of the forecast source (𝛥𝑘𝑓𝑜𝑟𝑒𝑐
∗  ) to the increments of the 

clear sky index of the ground measurements (𝛥𝑘𝑔𝑛𝑑
∗ ) for the same increment step (𝛥𝑡).  

As we saw in the previous section, the lead times 1 to 4 have a low probability to present cases 

of high variability. So, the relative scatter density plot for a 𝛥𝑡 = 5 min is shown in Figure 20. For 

the satellite persistence we see that all of the counts fall in the x-axis. That is expected as by 

definition the clear sky index persistence forecast will not be able to recognize any variations 

of  𝛥𝑘𝑔𝑛𝑑
∗ . As explained earlier, not all values of the satellite persistence forecast fall exactly into 

the x-axis because of the interpolation of the forecast instances (see Section 4.5.2). In contrast, 

a perfect forecast will recognize all variations of 𝛥𝑘𝑔𝑛𝑑
∗ , thus resulting in all counts falling within 
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the diagonal line. The correlation for the satellite forecast improves over the persistence 

forecast but still shows semi-persistent behaviour. This can be explained from its low original time 

resolution which gives it a kind of persistence inertial behaviour when interpolated and 

compared with high resolution data. Nevertheless, we see that this forecast already 

concentrates a big part of its values towards the diagonal line. Also we see on this correlation 

the apparition of peripheral values (far from the diagonal and the origin [0,0]). Depending on 

the quadrant, this peripheral values relate to a sign error on the forecasted increment 

(quadrants II and IV) or a small time shift between the forecasted and the predicted increment 

(quadrants I and III). The ASI network correlation shows yet another behaviour with values falling 

on the y-axis ( 𝛥𝑘𝑔𝑛𝑑
∗  =  0). These are related to the forecast of increments when there where 

no increments measured with the ground data. Also a higher density of points is seen on 

peripheral regions. These values can be attributed to the high temporal resolutions of the 

forecast, which increases the chances of predicting the increment with a time shift. Finally, the 

correlation of the combined forecast shows a clearer concentration of the values towards the 

diagonal, which is stronger than the ones of the satellite and ASI network forecasts. Also the 

probability of shifted increments decreases with respect to the ASI network forecast (density of 

the counts of the I and III quadrant). These are qualitative indications of a higher capability to 

forecast the correct increments (forecast variability) than the other forecasts.    

 

Figure 20. Relative scatter density plot of the increments of the clear sky index of the forecast source 𝛥𝑘𝑓𝑜𝑟𝑒𝑐
∗  

with the increments of the clear sky index of the ground measurements  𝛥𝑘𝑔𝑛𝑑
∗  for 𝛥𝑡 = 5 min (the colors are in 

logarithmic scale). 
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5 Conclusion 

Starting from a state-of-the-art ASI pair, an ASI network was developed in this work. The ASI 

network uses the intermediate products of ASI pairs and individual ASIs and combines them by 

dedicated statistical procedures. These intermediate products are cloud base height, 

segmented sky images (detected clouds), cloud velocity and diffuse irradiance estimated 

based on the ASI images. These combinations help to mitigate errors which are present in the 

intermediate products of individual ASIs and ASI pairs. As experimental infrastructure, the 

Eye2Sky ASI network with 23 operational ASIs located in an area of 110 km × 100 km was used. 

In the validation, the enhanced ASI-based nowcast proved to be more accurate than the 

state-of-the-art nowcast of an ASI pair and persistence. Depending on the evaluated station, 

the ASI network reduces RMSD by 23-30% (35 − 50 𝑊/𝑚2), 15-21% (25 − 37 𝑊/𝑚2), 12-16% (20-27 

𝑊/𝑚2), 8-12% (14 − 21 𝑊/𝑚2) over persistence at evaluated lead times of 5, 10, 15, 20 min. The 

ASI network reduces deviations compared to the reference nowcasts especially if locations 

are evaluated which are more distant from the meteorological station which supports the 

nowcasts. As to be expected, both ASI-based nowcasts bring a larger improvement over 

persistence in more variable atmospheric conditions. In these more variable conditions, the ASI 

network reduces RMSD by up to 36% and up to 75 𝑊/𝑚2 over persistence. The ASI network’s 

nowcast was also analyzed for higher lead times. For lead times of up to 95 min, the ASI network 

exhibited a lower RMSD than persistence. In this range, RMSD is reduced by up to 21% and up 

to 25 𝑊/𝑚2 over persistence. 

Also in this work a method to combine the highly resolved ASI network forecast with the satellite 

based forecast was developed. The method uses a liner regression to combine optimally the 

forecast inputs in such a way that the average error metrics are minimized with respect to 

ground measurements. We found that this newly developed hybrid forecast outperforms the 

RMSE of persistence and the input forecasts for all lead times calculated. It shows an 

improvement in RMSE of 5.07% to 13.97% (7.65 W/m2 to 19.93 W/m2) with respect to satellite 

forecasts and 7.55% to 15.09% (10.03 W/m2 to 26.03 W/m2) with respect to the ASI network 

forecast on lead times going from 5 to 30 min. It also shows a lower RMSE on the clear sky index 

for highly variable conditions.  

The work of this study is based on the Eye2Sky ASI network as it was available in the year 2020. 

With the ongoing extension of Eye2Sky, gaps in its spatial coverage are being closed. This will 

allow to develop an even more elaborate ASI-based nowcast for the higher lead times for 

which the data basis was not optimal yet in this study. From the forecast combination 

perspective, the processing of input data for more months during the year is needed to assess 

the seasonal transferability of the results. The combined forecast should also be validated at 

locations with different characteristics as the ones found in Northwest Germany in order to 

assess the differences on performance due to different weather conditions (dominant cloud 

situation, aerosol content, etc.). Finally, other interpolations and averaging strategies should be 

tested to minimize the artifacts introduced by the linear interpolations used in the method.  

 Both of the methods developed here by the DLR have a Technology Readiness Level (TRL) of 

6. These forecasts have been tested and validated in the relevant environment, the Eye2Sky 

network in our case. In order to achieve TRL of 7, both methods should be optimized and tested 

in operational use. This requires funding and collaboration with industrial partners and 

interested stakeholders. DLR is already in discussions with industrial forecast/hardware providers 

as well as with PV park owners and power traders to set up research projects that will allow 

such a TRL improvement.   
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The results of this work package have led to a number of journal articles (Blum et al. 2021, Nouri 

et al. 2021, Blum et al. 2022, Fabel et al. 2022). Further publications based on the outcomes 

summarized in this report are planned soon. 
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6 Key messages and recommendations 

• The accuracy of ASI-based nowcasting can be increased notably by 

combining individual ASIs or ASI pairs into an ASI network. 

• The combination of the ASI-based nowcasting with the satellite-based forecast 

can increase even further its initial accuracy. 

• The nowcasts of an ASI network can be particularly useful for grid operators and 

energy traders as the spatial coverage of the ASI-based nowcast can be 

increased to cover e.g., a whole urban area. Further, a larger forecast horizon 

can be achieved as more ASIs at larger distances are included.  

• The decision-making strategies from stakeholders of the energy market could 

benefit directly from the increased accuracy achieved with the combination of 

the ASI network nowcast with the satellite-based forecast, as higher forecast 

accuracy correlates with lower investment risk.       
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8 Appendix A: Summary of Smart4RES KPIs 

This Appendix summarises the KPIs defined in Smart4RES. These KPIs are divided in 2 groups: 

• Project KPIs defined in the Description of Action 

• Specific KPIs that are needed to evaluate technical results.  

Please refer to Smart4RES Deliverable D.1.1 ‘Use cases, requirements and KPIs for RES 

forecasting’, in particular Section 2.5 for a more detailed description of the different KPIs. 

8.1 Project KPIs 

8.1.1  Forecasting KPIs 
 

KPI 

category 

KPI 

index 

KPI name KPI baseline KPI target 

Weather Forecasting 

Project 

KPI 

1.1.a % absolute improvement 

Weather Forecasting 
score: 

15 to 30 min ahead 

Current operational 

solutions 
(AROME/ECMWF/GFS, 

DLR, EMSYS) 

10-15% RMSE 

Project 

KPI 

1.1.b % absolute improvement 

Weather Forecasting 

score: 
Few hours ahead 

Whiffle forecast driven 

with ECMWF boundary 

conditions and without 
data-assimilation 

10% RMSE 

Project 

KPI 

1.1.c % absolute improvement 

Weather Forecasting 
score: 

From few hours to 96 

hours ahead 

Current operational 

solutions of MeteoFrance 

10% RMSE,  

4-6% CRPS (solar 
radiative)  

5-10% CRPS (wind) 

RES Forecasting 

Project 
KPI 

1.2.a % improvement RES 
Forecasting score: 

Up to 30 min ahead 

Current operational 
solutions of EMSYS, EDP-R, 

errors from public 

datasets. 
 

Conditional evaluation 

on situations with highest 
forecasting errors. 

Solar: 9-12% RMSE, 3-
5% CRPS 

Wind: 7-9% RMSE, 2-

4% CRPS 

Project 

KPI 

1.2.b % improvement RES 

Forecasting score: 

Up to 96 h ahead 

Solar: 16-20% RMSE, 

4-6% CRPS 

Wind: 12-15% RMSE, 
3-5% CRPS 

Specific 
KPI 

1.2.c % improvement 
Variogram score for 

ensemble forecasts 

State-of-the-art methods 
for RES ensemble 

forecasts 

>= 0 

Specific 
KPI 

1.2.d % improvement for 
seamless generic 

forecasts 

Same as KPI 1.2.a, 1.2.b Weighted 
combination of 

targets in KPI 1.2.a, 

1.2.b over lead-times 
and RES sources 

Table 10: Smart4RES Forecasting KPIs 
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8.1.2  KPIs on grid management applications 
 

KPI 
category 

KPI 
index 

KPI name KPI baseline KPI target 

Grid management applications 

Project 

KPI 

1.3.a % decrease of load 

shedding events in 
isolated power systems 

Method without T5.2 tool 

and T5.1 storage support 
functions 

>= 80% 

Project 
KPI 

1.3.b % increased RES hosting 
capacity in MV 

distribution grids 

Method without 
predictive management 

of flexibility from T5.3 

>= 50% 

Project 
KPI 

1.3.c Number of years in 
investment deferral in 

grid reinforcement 

Traditional grid 
reinforcement 

> 2 years 

Specific 
KPI 

1.3.e Reduced energy 
curtailment of RES 

Historical time series of 
RES production under 

curtailment conditions, 

without storage and 
innovative forecasting 

product 

No target from the 
state-of-the-art. The 

objective is to 

minimize the KPI 
value 

Specific 
KPI 

1.3.g Fulfillment of voltage 
limits 

Traditional grid 
management without 

grid state optimization 

No target from the 
state-of-the-art. The 

objective is to 
minimize the KPI 

value, computed in 

accordance with EN 
50160 

Specific 

KPI 

1.3.h Fulfilment of branch 

current limits 

No target from the 

state-of-the-art. The 
objective is to 

minimize the KPI 

value 

Specific 

KPI 

1.5.a Demonstration of a 

software-in-the-loop run 

using an example from 
the project 

N.A. Successful 

implementation of at 

least one Smart4RES 
use case as code 

and as a black box 

on a separate 
device 

Specific 

KPI 

1.5.b Simulated environment 

including controls and 
interaction 

N.A. Successful 

interaction with the 
power system for at 

least one Smart4RES 

use case 

Specific 

KPI 

1.5.c Test protocol to test for a 

least one potential risk 

N.A Test of at least one 

potential risk of the 

software solution  

Table 11: Smart4RES Grid management KPIs 
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8.1.3  KPIs on market applications 
 

Table 12: Smart4RES Market applications KPIs 

 

KPI 

category 

KPI 

index 

KPI name KPI baseline KPI target 

Market applications 

Project 
KPI 

1.3.d % increase in electricity 
market revenue 

Point forecasts and 
optimal quantile 

10-15% decrease in 
costs stemming from 

balancing 

+ 10-15% revenue 
from participation in 

energy plus ancillary 

services 
Up to 20-25% from 

VPP (RES and 

storage) in energy 
and ancillary 

services 

Specific 
KPI 

1.4.b Analytic forecast 
evaluation by traders 

Same as 1.3.d Usual error levels 
observed by traders 

in similar conditions 

that chosen 
evaluation set Specific 

KPI 
1.4.c ‘No-big-change’ forecast 

evaluation by traders 

Specific 

KPI 

1.3.f Revenue losses per 

production unit due to 
curtailment 

Historical time series of 

RES production under 
curtailment conditions, 

without innovative 

forecasting product 

No target from the 

state-of-the-art. The 
objective is to 

minimize the KPI 

value 
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