
This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 864337

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 864337

Smart4RES
Strategies for RES-oriented NWP models’ 
enhancement

D2.1 Strategies for RES-oriented NWP models’ enhancement

WP2, T2.1

Version V2.0

Authors:  Ivana  Aleksovska,  Bastien  Alonzo,  Marie  Cassas,  Laure  Raynaud,
Quentin Libois, Météo-France



This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 864337

D2.1 Strategies for RES-oriented NWP models’ enhancement

Disclaimer
The present document reflects only the author’s view. The European Climate,
Infrastructure and Environment Executive Agency (CINEA) is not responsible for
any use that may be made of the information it contains.

2



This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 864337

D2.1 Strategies for RES-oriented NWP models’ enhancement

Technical references

Project Acronym Smart4RES

Project Title
Next Generation Modelling and Forecasting of Variable 
Renewable Generation for Large-scale Integration in Energy 
Systems and Markets

Project Coordinator ARMINES – MINES ParisTech

Project Duration November 2019 – April 2023

Deliverable D2.1: Strategies for RES-oriented NWP models’ enhancement

Dissemination level 1
PU

Nature ² R

Work Package WP 2 – Next generation of weather forecasting models for RES
purpose

Task T 2.1 – RES-oriented NWP

Lead beneficiary Météo-France (MF)

Contributing 
beneficiary(ies) ALL

Reviewers Tuhfe Göçmen (DTU), Björn Witha (EMSYS)

Due date of 
deliverable 31 January 2022

1 PU = Public
PP = Restricted to other program participants (including the Commission Services)
RE = Restricted to a group specified by the consortium (including the Commission Services)
CO = Confidential, only for members of the consortium (including the Commission Services)

² R = Report, P = Prototype, D = Demonstrator, O = Other

Document history
V Date Description
0.1 15/12/21 First draft submitted by Laure Raynaud
1.0 22/12/21 Review by Quentin Libois (WP leader)
2.0 17/01/22 Review by Tuhfe Göçmen and Björn Witha
2.1 27/01/22 Review by George Kariniotakis (coordinator)
3.0 01/02/22 Final public version released by Coordinator

3



This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 864337

D2.1 Strategies for RES-oriented NWP models’ enhancement

Executive summary

Smart4RES is a H2020 research project that aims to develop and validate next-generation
tools enabling to:

 Increase  the  performance  of  Renewable  Energy  Sources  (RES)  production
forecasts by at least 15%,

 leverage the economic value of end-use applications under RES uncertainty.

This  document  reviews the  strategies  considered  within  the  Smart4RES  project  to
improve the prediction of  atmospheric  variables  relevant  to  the  RES using  Numerical
Weather Prediction (NWP) models, with a focus on  surface  solar irradiance and wind at
hub height.  Weather forecasts errors  are indeed the main source of uncertainty in RES
forecasts, and RES intermittency is the main obstacle to the penetration of RES in the
electricity grid.  Better predicting the evolution of the atmosphere from a few hours to a
few days is thus at the core of the energetic transition supported by Smart4RES. 

The  document  first  discusses  how  the  representation  of  aerosols  and  cloud  optical
properties  in  NWP  models  could  be  updated  to  better  simulate  solar  irradiance.  In
addition it is shown that valuable additional information could be extracted from such
models in complement to the variables currently used by most end-users. In particular,
outputting cloud optical thickness and the spectral distribution of solar irradiance could
be beneficial in many cases. Then a variety of post-processing tools are presented, that
take advantage of the wealth of information contained in ensemble simulations, which
tend  to  become  the  standard  of NWP.  These  include  building  pseudo-deterministic
forecasts  (single  time  series  built  from  ensemble  simulations),  which  outperform
deterministic or ensemble-mean forecasts. Seamless forecasts (forecasts that link in time
different  models,  generally  having  different resolutions  and  leadtimes)  are  also
presented, which take advantage of a high resolution (short leadtime) model for the first
part of the forecast, and minimize the discontinuity when moving to a lower resolution
(longer leadtime) model.  In addition, probabilistic products targeting the occurrence of
relatively rare but critical events, such as wind ramps and cut-out, are derived from the
unique high temporal resolution of Smart4RES dedicated simulations. All these tools aim
at providing to the final user relevant information in an accessible format to maximize the
information passed from the NWP model to the end-user. They participate to reducing by
approximately 10% the RMSE for forecasts of the relevant variables. Finally, we present
paths to dedicated RES forecasts, which includes the optimization of NWP models for RES
purposes and training meteorologists to become experts in RES forecasting.

This work is carried out in the framework of Smart4RES WP2 entitled Next generation of
weather forecasting models for RES purpose.  This report will be later on complemented
by deliverable D2.2 that will specifically focus on the added value of increasing the spatial
and  temporal  resolution  of  NWP  models  for  RES  forecasting.  Deliverable  D2.3  will
introduce alternative sources of weather information and will present innovative tools to
merge NWP forecasts with these complementary products. Finally deliverable D2.4 will
investigate the potential of very high-resolution simulations including assimilation of very
fine-scale observations.

Key messages:  

 Physical variables relevant to the RES and internally used in NWP models
could be outputted at very low cost, with significant gain for the users

 Ensemble simulations contain a wealth of information,
enabling to build deterministic-like forecasts that outperform deterministic forecasts,
and to derive probabilistic decision-aid tools relevant to the RES sector

 Enhanced communication between the atmospheric modeling and energy communities
is key to improve RES forecasts 
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Introduction

Numerical Weather Prediction (NWP) models have been developed for nearly a century,
primarily  to  help  predicting  the  occurrence  of  extreme  meteorological  events  and
protecting people and goods. Nowadays, the primary mission of national weather services
is to protect people and goods from natural  hazards related to atmospheric processes
(heavy  rain,  storms,  heatwaves,  avalanches,  etc.).  However  the  number of  economic
activities  relying  on  NWP  has  greatly  increased  in  the  last  decades,  now  including
aeronautics,  agriculture  and  more  recently  the  energy  sector.  Despite  the  constant
evolution  of  the  expectations  of  the  final  users,  only  limited changes  have  been
implemented in the way NWP models are designed,  optimized, evaluated and run. As a
consequence, many users simply take what is available from operational forecasts and
have developed sophisticated post-processing tools to adapt the forecasts to their actual
needs. As a consequence, interactions between the atmospheric sciences community and
the  final  users  of  weather  forecasts  have  remained  limited,  which  has  in  particular
precluded a faster improvement of RES forecasts.

In this report we highlight strategies that should be followed to adapt NWP models to the
needs of the RES sector. We address this issue by presenting ongoing research  carried
out at Météo-France and elsewhere in that direction, and try to quantify the added value
of implementing such strategies, bearing in mind the objectives fixed in the Smart4RES
project  in terms of  improvement  of  the  weather  forecasts  for  RES-relevant  variables,
namely that we target a 10-15% improvement.

1. Adapting NWP models to RES
1.1. Some background

NWP models predict the evolution of the atmosphere based on initial (and also boundary
in the case of  limited area models)  conditions.  To do so they solve the  equations  of
motion for the air on a discretized grid,  accounting for the conservation of mass and
energy. NWP models are generally split into two main components: the dynamical core
which solves the equations of motion for structures larger than a few grid cells, and the
physical parametrizations that account for the impact of all subgrid unresolved processes.
The latter mostly include turbulence, convection, microphysics  and radiation.  Because
parametrizations involve many poorly constrained parameters, the latter are practically
tuned  to  ensure  that  the  model  overall  behaves  correctly.  The  performance  of  NWP
models is evaluated using scores, that routinely compare model forecasts with standard
reference observations of wind gusts and surface precipitation. Other  variables such as
near-surface  temperature,  humidity,  wind  and  sea-level  pressure are  commonly
evaluated  although  they  are  not  explicitly  included  in  the  scores.  The  tuning  of  the
models is a complex and key process in atmospheric modeling, that aims at maximizing
the  scores  (Hourdin  et  al.,  2017).  As  a  consequence  all  the  variables  that  do  not
contribute  to  the  scores  are  not  expected  to  be  as  well  predicted  as  those  directly
included in them. In particular, wind in altitude and solar irradiance are not  specifically
evaluated.

A  strong constrain for NWP modeling is also the capability to perform forecasts more
rapidly than the real time. In practice it takes less than one hour for a supercomputer to
make a forecast for around 48 hours ahead. It means that any improvement to the model
that  has a  negative  impact  on  the  total  computation  time  cannot  be  implemented
operationally.  Improvements  can  come  from  a  refinement  of  the  physical
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parametrizations and/or from an increase in spatial and temporal resolutions. Fortunately,
NWP models rely on an ever-increasing computational performance which allows them to
become increasingly more time-consuming.

Although a significant part of the research in atmospheric modeling aims at improving the
physical  parametrizations  by  refining  our  understanding  of  the  physical  processes
themselves or by constraining the parameters based on observations and high-resolution
models (Couvreux et al., 2021), this aspect  will not be elaborated further in this report
because this is a continuous, slow process that is not specific to the RES sector. Although
improvements in the physical parametrizations are expected to increase the performance
of the models, including for RES purpose, in this section we focus on actions that can be
taken right away with minor effort, with a particular focus on solar irradiance.

1.2. Extracting new variables from NWP models

The radiative variables output from NWP models directly come from the radiative scheme
of the model. This parametrization primarily aims at computing the net radiative flux at
the surface (i.e.  the  sum of the net longwave and shortwave fluxes) from which the
surface energy balance is computed,  and the vertical  profiles of radiative heating (or
cooling) rates which describe how absorbed (emitted) radiation locally warms up (cools
down) the atmosphere. To achieve this, the radiative  scheme needs to account for the
numerous properties of the atmosphere that drive the interactions with solar radiation. As
the  radiative  properties  of  the  atmosphere  greatly  vary  across  the  solar  spectrum,
radiative  schemes generally  perform the calculations over several  contiguous spectral
bands.  The  resulting  spectral  fluxes,  though,  are  not  routinely  outputted.  Likewise,
radiative  schemes  generally  distinguish  diffuse  and  direct  radiation,  the  latter  being
loosely defined as will be explained further. Finally some internal variables such as cloud
optical thickness are computed in the radiative  scheme but not outputted either, while
this is a valuable information for the final user. Below we detail which quantities could
advantageously be provided by NWP models without any extra computational cost, the
only drawback being the need to save and store more data.

1.2.1. Spectral fluxes
The response of solar panels and other solar devices greatly depends on the spectral
distribution of solar irradiance (Fernandez et al., 2014). When only broadband fluxes are
provided  by  NWP  models,  the  user  has  to  make  some  assumption  on  the  spectral
distribution.  Under  cloudy  conditions  this  approximation can  result  in  errors  in  PV
production forecast larger than 10% (Lindsay et al., 2020). Using the spectral information
contained in the radiative scheme would avoid making such an assumption, and it simply
implies saving variables (namely spectral surface fluxes) that are already computed. For
instance  in  the  operational  version  of  AROME  (the  operational  limited-area  model  of
Météo-France),  the  fluxes are  computed over  6 bands,  and  in  Integrated Forecasting
System (the model of the European Center for Medium Range Weather Forecast) they are
computed over 14 bands (Figure 1). We show in Figure 2 an example of direct solar fluxes
computed  with  AROME.  Assuming  a  simple scaling  between  spectral  and  broadband
fluxes can result in errors up to  2% in the useful fraction of  irradiance, which directly
translate into errors in PV forecasts.  Accessing this  information would avoid a loss of
information that a posteriori needs to be estimated, for instance by trying to compute the
Average Photon Energy (APE, Norton et al., 2015).
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Figure 2: Instantaneous direct fluxes simulated by AROME in 6 spectral bands over a spatial domain centered

around Toulouse (South-Western France). The top left panel shows the broadband SW flux. The bottom left

panel shows the error in the estimated cumulated flux up to 1190 nm (roughly the cutoff wavelength of solar

panels) assuming proportionality with broadband flux, as a function of the actual flux in this spectral range.

Figure 1: The dark line shows the spectral solar irradiance at top-of-atmosphere (Kurucz, 1995) and the

vertical lines indicate the spectral bands from AROME (blue) and IFS (red) models. The dashed line shows

the typical spectral response of a mono-crystalline silicium solar cell

(https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/effective-irradiance/spectral-response/).
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1.2.2. Cloud fraction seen by the radiative scheme
Although  algorithms  designed to  estimate  solar  energy production  from NWP models
forecasts do not use spectral outputs, they may rely on the cloud fraction predicted by
the model. Usually, only the total cloud fraction is provided as output, which is the cloudy
fraction of the grid point as seen from the surface or from satellite. Practically this total
cloud  fraction  is  diagnosed  within  the  NWP model  from the  vertical  profile  of  cloud
fraction for each grid cell. The combination of these successive partial cloud fractions into
a total cloud fraction is not straightforward, and requires assumptions on the overlapping
of  cloudy  layers  (Räisänen  et  al.,  2004).  These  assumptions  can  be  different  in  the
radiative scheme (where it actually impacts the solar fluxes) and in the cloud scheme
(where it is only a diagnostic). This can result in inconsistencies between the information
outputted by the model (the cloud fraction from the cloud scheme) and that actually used
to compute the solar fluxes. Hence it may be useful either to provide only the total cloud
fraction seen by the radiative scheme, or to provide both variables if it occurs that both
provide complementary information.

1.2.3. Cloud optical thickness
Clouds are responsible for the largest and fastest variations of surface solar irradiance, as
they can reduce by up to  95% the  irradiance compared to  clear  sky conditions.  The
primary  quantity  that  drives the cloud radiative  impact  is  the cloud optical  thickness
(COT). COT increases linearly with the total amount of cloud condensate (liquid water
path (LWP) in the case of liquid clouds) and with the inverse of effective radius reff of cloud
particles. The amount of condensate is a standard prognostic variable in NWP models, but
reff  is not. Generally it is estimated in the radiative scheme from the liquid water content
(LWC),  using  empirical  relations  based on observations.  Although the  COT is  the  key
quantity  to  describe  the  radiative  impact  of  a  cloud this  quantity is  typically  not  an
output. As a consequence, the user only has access to  insufficient  cloud information to
predict solar energy resource: cloud fraction, cloud altitude, LWP. As clouds modify the
spectral  distribution  of  light  via  preferential  absorption  and  scattering,  their  optical
thickness drives the spectral distribution of radiation. This information can to some extent
complete or replace the information on the spectral fluxes.

1.2.4. Direct fluxes
It is worth noting that the definition of direct radiation can vary from one community to
another, depending on the final use of this information (Xie et al., 2022). From the point
of view of NWP models, any radiation that does not deviate much from the direction of
the Sun is considered direct, because in the end the main difference between direct and
diffuse  radiation  will  occur  at  the  surface,  when  the  surface  reflectance  could  differ
between direct and diffuse radiation or when surface features can create shadows.  A
widely used approximation in radiative schemes is the two-stream approximation, which
greatly  simplifies  the  description  of  radiative  transfer  in  a  scattering  atmosphere  by
considering only fluxes going upward or downward. However this approximation is more
accurate  when  scattering  is  isotropic.  Because  scattering  by  large  particles  such  as
aerosols and clouds is characterized by a strong forward peak (typical of Mie scattering),
this approximation is not very accurate. To circumvent this it is common to consider that
any  radiation  slightly  scattered  can  be  treated  as  unscattered.  The  δ-Eddington
approximation  replaces  the  original  phase  function  by  the  sum  of  a  Dirac  and  a
contribution which is much more isotropic (Joseph et al., 1976). Doing so means that the
direct radiation computed by the model actually includes slightly scattered radiation. It is
clear  from  the  loose  definition  of  forward  scattering  that  the  amount  of  scattered
radiation that is assumed unscattered depends on the threshold chosen to distinguish
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scattered and unscattered radiation. The choice made in NWP models primarily aims at
getting the most accurate global horizontal irradiance. When direct irradiance is critical
(in particular for solar concentration devices) this definition might not be satisfying. In
this case it is either possible to adapt the delta-scaling (Villefranque and Hogan, 2021), or
to scale the truly unscattered radiation (which only depends on total optical thickness via
the Beer-Lambert law) to include slightly scattered radiation (Sun et al., 2016, Räisänen
and  Lindfors,  2019).  In  any  case  it  should  be  clear  to  the  user  that  the  direct  flux
outputted by a NWP model can be a quite different quantity than the one of interest. 

1.2.5. Extra time steps
Finally  it’s worth bearing in mind that the internal  time step of NWP models is much
shorter than the standard time step of the outputs. For instance the internal time step of
AROME is 50 s, compared to the standard 1 hour output. The internal time step is directly
related  to  horizontal  resolution  to  satisfy  the  Courant-Friedrich-Levy  condition  which
states that wind should not transport variables more than one grid away in one time step.
This roughly means that Δx should be less than V·Δt, where V is the typical wind speed.
With a velocity of 20 m s-1 and a spatial resolution of 1.3 km this gives Δt less than 65 s.
The reason why not all time steps are stored is mostly an issue of data storage and time
of writing. Although it is probably  redundant to extract all  time steps, storing outputs
more frequently could definitely be useful for a large variety of end-users. This will be
explored in Section 2.4. 

1.3. Refining the radiative scheme

The main issues in solar irradiance forecasts are related to the correct prediction of cloud
occurrence (in particular fog, stratus and cirrus which are very difficult to simulate, Köhler
et al., 2017), a shortcoming of NWP models not restricted to RES forecasts. Yet several
improvements  can be  achieved by  refining the  representation  of  cloud-radiation  and
aerosol-radiation interactions, without directly tackling the issue of cloud modeling which
combines  turbulence  and  microphysical  issues.  Some  paths  to  improvement  are
discussed below, which constitute active research actions at Météo-France initiated in the
context of Smart4RES.

1.3.1. Near-real time representation of aerosols
Although clouds are responsible for the largest forecasting errors of solar irradiance, in
many areas largely relying on solar energy such as Mediterranean countries, clear-sky
conditions are dominating and the impact of aerosols is non-negligible (Gutiérrez et al.,
2018).  In  most  NWP  models  aerosols  are  accounted  for  via  monthly  climatologies,
meaning that the amount of aerosols considered in the model at one location will be the
same every year for a given calendar date. Although such climatology may capture the
average  annual  aerosol  load  and  the  main  seasonal  variations,  it  does  not  capture
aerosols events such as dust outbreaks (Córdoba-Jabonero et al., 2021) which can have a
significant  impact  on  the  power  production  (Rieger  et  al.,  2017).  There  are  several
options to  tackle  this  issue.  The  first  is  the explicit  simulation  of  the  transport  and
physical evolution of aerosols as prognostic variables, as do chemical transport models
(CTM)  like  MOCAGE  (Josse  et  al.,  2004).  However  it requires  a  huge  amount  of
computation  time  and  currently  appears  unrealistic  for  operational  forecasts.  An
alternative  is to use forecasts from  a  CTM to force aerosols  concentrations  in  a  NWP
model. Such strategy is currently being explored at Météo-France for AROME. To quantify
the  potential  added  value  of  such  an  upgrade,  we  have  used  one  year  of  AROME
atmospheric outputs to simulate solar irradiance and  PV production using the radiative
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scheme ecRad (Hogan et al., 2018) and the PV code WO2PV (Lindsay et al., 2020). To this
end we  combined one year of atmospheric variables predicted by AROME  with various
sources of aerosols including Copernicus Atmosphere Monitoring Service (CAMS) monthly
climatology (Bozzo et al., 2020) and CAMS  near-real-time products. The comparison of
both sets of simulations gives a hint to the errors  encountered when using a monthly
climatology, and to the potential improvement that could result from using near-real-time
aerosols forecasts for operational weather prediction. Practically, instantaneous and local
errors up to 100 W m-2 could be avoided. The annual RMSD of solar irradiance between
both sets of simulations reaches 30 W m-2 in very polluted areas for a mean RMSD of
around  8  W  m-2 over  AROME  domain  (Figure  3).  This  suggests  that  using  aerosols
forecasts in NWP models could already decrease the RMSE of solar irradiance forecast by
about 3% in all conditions.

To further illustrate the potential improvement of using near-real-time aerosols, we show
in Figure 4 the scatterplot of irradiance forecast errors (with respect to observations from
Météo-France’s  pyranometers  network)  as  a  function  of  the  difference  between  the
aerosol optical depth (AOD, the primary quantity that characterizes the radiative impact
of  aerosols)  in  the  near-real-time  products and  in  the  operational  climatology.  As
expected, when the operational  climatology overestimates the aerosol  load,  the solar
irradiance is  underestimated.  The linear regression of  both quantities can be used to
correct the irradiance forecasts by adding a linear contribution to the irradiance forecast.
Doing so allowed to reduce the RMSE from  21.3 to 16.2 W m-2,  suggesting that nearly
25% of the RMSE in clear-sky conditions could be removed by appropriately accounting
for the high-frequency variations of aerosols. Such a simple strategy could be utilized by
end-users in post-treatment of NWP forecast at a very limited computational cost.
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Figure 3: Root mean square deviation (RMSD, in W m-2) between simulated solar irradiances

using CAMS aerosols climatology and CAMS near-real-time products for the period August 2019

–July 2020, for the AROME operational domain.
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1.3.2. Cloud optical properties
The modulation of surface irradiance by clouds depends
on their detailed microphysical properties (concentration
of droplets or ice crystals, particle shape, particles size
distribution (PSD)), which are poorly simulated by NWP
models. As a consequence the cloud optical properties
are  generally  estimated  from  bulk  cloud  properties
(mostly  from  water  contents)  based  on  empirical
relationships,  often  derived from  observations.  In
practice, such relationships were obtained for  particular
cloud conditions, but tend to be used universally in NWP
models. It means for instance that from an optical point
of view, cumulus clouds and fog are treated exactly the
same way, although their microphysical  properties are
obviously different. It is possible, though, to improve this
representation.  First,  more  detailed  microphysical
schemes  (the  parameterization  that  describes  the
formation  and  evolution  of  cloud  particles)  are  now
implemented in NWP models (Jouan et al., 2020). These
new  generation  models  do  provide  quantitative
information  about  particle  size  that  can  be
advantageously  used  in  the  radiative  scheme.  In
addition it is possible to use the same assumptions on
the shape of the PSD in the microphysical and radiative
schemes,  ensuring  consistency  throughout  the  cloud
physics.  In  this  context  we  have  developed  a  set  of
parameterizations of optical properties for liquid clouds
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Figure 4:  Scatterplot of the relative errors in solar irradiance forecasts for

AROME in clear-sky conditions (with respect to ground measurements across

France in August 2020) as a function of the difference in aerosol optical depth

(AOD) between AROME climatology and CAMS near-real-time product. The dashed line

indicates the linear regression used to correct solar irradiance forecasts.

Figure 5: Simulated downward (solid)

and upward (dashed) solar fluxes with

a stratocumulus cloud. The colors

correspond to various shapes od the

PSD, all other things being equal.

Taken from Jahangir et al. (2021).
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(tables that provide the fundamental optical properties of a cloud as a function of cloud
droplets effective radius and shape of the size distribution). Our focus was on the shape
of the  PSD, because it both affects the estimation of the effective radius (Martin et al.,
1994)  (when  this  quantity  is  not  provided  by  the  microphysical  scheme)  and  the
estimation of the optical properties (Slingo, 1989). To illustrate how the assumed shape
impacts the overall simulation of solar irradiance we show in Figure 5 the vertical profiles
of downward irradiance  under a stratocumulus cloud,  for various PSD shapes. It shows
that  the  surface  irradiance  can  vary  up  to  20%  depending  on  the  assumed  shape,
highlighting the large, and up to now unquantified, impact of the PSD shape. The new
parameterizations have been implemented in the research model Meso-NH (Lac et al.,
2018) and will be implemented soon in the AROME model to further asses the impact in
an operational context.

More generally developers of NWP models are more and more trying to build consistent
physical  parametrizations  that  communicate  with  each  other  and  use  as  much
information  as  possible  coming  from other  parametrizations.  This  is  a  major  change
compared to the times when physical processes were split among distinct communities
that hardly knew about the developments of the others.

Another  shortcoming of  cloud-radiation  interactions  in  NWP  models  is  the  fact  that
precipitating particles (rain, snow, graupel) are often not accounted for in the radiative
scheme. It means that from a radiative point of view, falling snow is treated exactly as
clear-sky, while obviously snow does reduce visibility, hence solar irradiance.  It results
from the assumption that the radiative impact of a few large particles is much less than
that  of  numerous  small  suspended  cloud  particles.  Although  this  might  be  true  on
average, Hill et al. (2018) pointed out that singular events do show a significant impact of
precipitating particles. Given that a large fraction (about 75%) of condensed water in
NWP  models  corresponds  to  precipitating  particles,  their  radiative  impact  could  be
significant.  Accounting  for  such  particles  would  require  the  computation  of  optical
properties distinct from those of the clouds, which are valid for particles up to 100  μm
only, while precipitating particles can be one millimeter or more. Interestingly, accounting
for snow when simulating lidar backscattering from outputs of GCMs, Cesana et al. (2021)
showed  an  improvement  between  simulated  and  observed  backscattered  signals,
suggesting that the radiative impact of snow is not negligible. Analysis of singular cases
when solar  irradiance was poorly  predicted by AROME also pointed to situations  with
significant  amounts  of  snow  or  rain.  This  overall  suggests  that  accounting  for  the
radiative impact of precipitating particles would improve the prediction of solar irradiance
in a number of situations, although the overall impact needs further quantification.

1.3.3. 3D radiative transfer
In  NWP  models,  the  simulation  of  radiative  transfer  relies  on  the  plane  parallel
hypothesis. It means that each atmospheric column is considered as a stack of infinitely
extended  layers.  So-called  3D  effects,  which  can  be  described  as  the  interactions
between adjacent atmospheric layers, are completely ignored, which results in inaccurate
irradiance forecasts when clouds are present. A very simple illustration is the fact that in
a model, the cloud shadow always lies below the cloud, whatever the position of the Sun
in the sky. Likewise, a clear-sky column will  feature clear-sky irradiance, even though a
neighboring column may contain a cloud hiding the Sun. These shortcomings are mostly
due to the computational efficiency required by radiative schemes, which cannot handle
the whole 3D field of atmospheric variables and need to be as parallelized as possible,
meaning  that  computations  in  columns  should  be  independent  of  each  other.  This
approximation has been considered acceptable in large-scale models where columns are
sufficiently  large,  but  it  becomes  a  much  more  questionable  assumption  in  high-
resolution models at the kilometer-scale or less. A costly alternative would be to use 3D
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radiative transfer schemes in NWP models, but this is still far from being an operational
solution. Meanwhile, recent studies have focused on the simulation of solar irradiance
fields based on NWP models, but using offline 3D radiative transfer simulations (Gristey et
al., 2020). For instance the numerical tool htrdr (Villefranque et al., 2019) was developed
to simulate irradiance fields from outputs of atmospheric models. Applied to large-eddy
simulations (LES) where clouds are resolved, such simulations allow to study the detailed
impact of individual clouds at the surface. We show for instance in Figure 6 a map of solar
irradiance obtained under a field of cumulus (RICO case study, Van Zanten et al., 2011).
Such a map can be used to further investigate the impact of clouds on the solar energy
availability at  the scale of a PV plant,  with a focus on the high temporal  and spatial
resolution  variations.  Such  simulations  can also  be  used as  references to  assess  the
performance of radiative parametrizations and improve them. Note that the added value
of LES for weather forecasts is explored in Smart4RES, and will be detailed in deliverable
D2.2 and D2.4.
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Figure 6: Simulation of solar irradiance under a cumulus field simulated with the model Meso-NH at 25 m

resolution. The simulation is performed with the tool htrdr (Villefranque et al., 2019) to provide a surface

map (a) from which the probability distribution of solar irradiance is computed (b).
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2. Using ensemble simulations
2.1. Ensemble prediction

The  intrinsic  predictability  of  atmospheric  dynamics,  and  in  particular  of  small-scale
phenomena such as those relevant for RES forecasting, is limited. In order to account for
the uncertainty of weather forecasts it is now of common practice to use  probabilistic
forecasting,  that  aims  at  predicting  the  probability  distribution  of  future  atmospheric
states, instead of a single deterministic weather forecast. 

Probabilistic  forecasting  is  currently  implemented  with  Ensemble  Prediction  Systems
(EPSs), that run in parallel multiple perturbed weather forecasts (also called “members”).
Each forecast  uses slightly  different initial  conditions,  boundary conditions  and model
formulations in order to account for the different sources of uncertainty (Figure 7). 

Different EPSs have been developed by several National Weather Services worldwide. At
Météo-France, two EPSs are used for operational forecasting, the ARPEGE-EPS and the
AROME-EPS. The ARPEGE-EPS is based on the global ARPEGE NWP model and provides
forecasts  up  to  96  hours.  Each  member  of  ARPEGE-EPS  starts  from  different  initial
conditions,  designed with state-of-the-art methods including Singular  Vectors (SV) and
Ensemble Data Assimilation (EDA). In order to account for the uncertainty of subgrid scale
processes  each  member  uses  a  different  package  of  physical  parametrizations
(Descamps et al., 2015). The AROME-EPS is based on the regional high-resolution AROME
model,  that  runs over a  Western Europe domain  centered over  France,  and provides
forecasts up to 51h. For each AROME member, perturbed initial conditions are derived
from a specific AROME EDA, lateral boundary conditions (LBC) are provided by a selected
ARPEGE-EPS  member,  and  the  model  uncertainty  is  represented with  stochastic
perturbations  of  physics  tendencies  (Bouttier  et  al.,  2016).  The characteristics  of  the
operational ARPEGE-EPS and AROME-EPS are given in Table 1.
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Figure 7: Principle of Ensemble Prediction. Different NWP forecasts are issued from slightly perturbed initial

conditions. The resulting ensemble of forecasts samples the distribution of the future atmospheric states.



This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 864337

D2.1 Strategies for RES-oriented NWP models’ enhancement

Table 1: Characteristics of AROME-EPS and ARPEGE-EPS for the currently operational configuration (denoted as

Ref) and for the Smart4RES configuration.

AROME-EPS ARPEGE-EPS

Ref Smart4RES Ref Smart4RES

Horizontal resolution 2.5 km 1.3 km 7.5 km 5 km

Output frequency 1 h 5 min 1 h  4 min

Size 16 25 35 35

Lead time 51 h 51 h 96 h 96 h

LBCs ARPEGE-EPS ref ARPEGE-EPS Smart - -

For the purpose of the Smart4RES project, enhanced configurations of ARPEGE-EPS and
AROME-EPS  have  been  developed  to  improve  the  prediction  of  RES  variables.  These
enhanced configurations include a significant increase of horizontal resolutions: from 7.5
km to 5 km for ARPEGE-EPS and from 2.5 km to 1.3 km for AROME-EPS. In addition the
frequency  of  forecast  outputs  is  greatly  increased:  from hourly  outputs  to  4 minutes
outputs (ARPEGE) and 5 minutes outputs (AROME).  The size of the  AROME-EPS is also
increased from 16 to 25 members. Finally,  the relevant output weather variables and
time periods to run have been defined with Smart4RES partners. Ensemble forecasts over
four periods are made available to the project: October 2018, August 2019, and February-
March 2020. 

The practical use of EPS outputs in RES applications is not straightforward and requires
further investigation. One can consider different levels of integration, in particular:

 A direct use of ensemble members in RES prediction  models: this allows the  full
EPS information to be propagated in the applications, however the cost of storing
and handling ensemble RES simulations can be prohibitive for some users.

 To  reduce  the  amount  of  information,  ensemble  outputs  can  be  summarized
before being used in RES applications: different solutions are possible, including
for instance the selection of a smaller set of  informative members,  the use of
ensemble  statistics  (mean,  percentiles),  the  identification  of  the  most  likely
member.

 Raw ensemble weather outputs can also be post-processed to derive RES-oriented
Decision Support Tools (DSTs),  highlighting specific risks for the management of
RES production (for instance production intermittency due to wind ramp events).

 Finally,  how  to  combine  forecasts  from  the  AROME-EPS  and  ARPEGE-EPS  to
provide seamless predictions from nowcast to 96h can be important for medium-
range planning.

These questions have been examined  at Météo-France, and innovative strategies  have
been developed to provide ensemble-based deterministic forecasts, seamless ensembles
and RES-oriented DSTs. The proposed methods are described in the next sections.
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2.2. Dataset

For the need of the development and assessment of the three post-treatments proposed,
the wind speed is extracted from the AROME and ARPEGE EPSs described previously. The
AROME deterministic forecast used operationally at Météo-France (spatial resolution of
1.3  km,  hourly  outputs  and  maximum  leadtime  of  42  hours)  is  extracted  as  well.
Evaluation  of  post-treated  forecasts  are  performed  against  observed  wind  speed
measurements from anemometers installed on the nacelles of 121 Vestas wind turbines
with hub-heights between 95 m and 105 m. The locations of the turbines are displayed in
Figure 8. Table 2 summarizes the dataset used in the study. 

Table 2: Details of the dataset used in this report. HR (High Resolution) refers to Smart4RES simulations.

Observations AROME
deterministic

AROME EPS HR ARËGE-EPS HR 

Variable ~ 100 m 10-min mean wind
speed

100 m 
wind speed

100 m
wind speed

100 m
wind speed

Locations 121 wind turbines
(see Figure 8)

Closest gridpoints
to observations

Nature Nacelle anemometers on
wind turbines

NWP outputs

Periods Summer 2019 and Winter 2020 Winter 2020

Frequency 10 min 1 h 5 min 4 min
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Figure 8: Locations of wind turbines at level around 100 m from which observations are

available. The red points show the locations where turbine height is exactly 100 m.
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2.3. Pseudo-deterministic forecasts

In order to summarize the ensemble outputs, we propose different methods to extract a
single deterministic trajectory which we call  a pseudo-deterministic (PD) forecast.  The
methods are presented and evaluated in the next subsections. 

In the following, we denote N  the size of the ensemble associated with the index m,  D
the number of forecasted days associated with the index d ,  K  the number of locations
associated with the index k , T  the forecast horizon associated with the index t . x and y
respectively correspond to observations and forecasts at 10 min resolution.

2.3.1. Approach and methods
Three different  approaches  to  extract  a PD forecast  from the AROME-EPS have been
investigated, that are detailed below.

Optimal percentile

This method is based on the choice of the ensemble percentile that minimizes a given

forecast score over a training period Dtr. Four different ways to optimize the percentiles

are considered : 

 A constant optimized percentile: The percentile minimizes the forecast score
averaged spatially over France, temporally over the full forecast leadtime and over
the training period.

 A  leadtime dependent optimized percentile:  The percentile  minimizes  the
forecast score averaged spatially over France, and temporally over a given time

window W q<T  and over the training period.

 A  location  dependent  optimized  percentile:  The  percentile  minimizes  the
forecast score for each location, averaged temporally over the full leadtime and
over the training period.

 A  leadtime/location  dependent  optimized  percentile:  The  percentile
minimizes the forecast score for each location, averaged temporally over a given

time window W q<T  and over the training period.

Statistics derived from the ensemble such as percentiles are generally smoother than a
raw ensemble member. In particular, the high frequency variations are  attenuated. For
users interested in high frequency variations, a solution is to take the ensemble member
closest to the optimal percentile. The closest member is defined by the minimal euclidean

distance (squared deviation), averaged over a given time window W closest<T :

                                                    ymq
= min

m=1 :N

1
W closest

∑
t=t 0

t0+W closest

|yq− ym|,

with  yq the optimized percentile found with methods explained previously,  ym a given

member of the ensemble, and t 0 the starting timestep of the given time window. 
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Weigthed mean method

Stanger et al. (2019) propose a method to weight ensemble members based on the rank
histogram of past observations.  The rank histogram measures whether the probability
distribution  of  observations  is  well  represented  by  the  ensemble.  To  build  a  rank

histogram, we first sort all members y t ,0 , y t ,1 ,... , y t , N  together with the observation x t. We

find the rank rt of x t within this sorted list of N+1 values. As for the optimized percentile

method,  we build such rank histogram over the training period  Dtr, for each location  k

and/or over a given time window W r<T . 

The height of the bins obtained from the normalized histogram correspond to weights

applied to members which rank is contained within the bins boundary : the rank rm of the

forecast member ym is computed in order to attribute to ym the weight wm corresponding

to the bin which contains rm. Then the forecasted variable is given by :

Y wm
=∑

m=1

N

wm× ym

Preliminary classification step and optimal percentiles

Instead of computing the optimal percentile or mean from the full  ensemble, another
approach is to reduce the ensemble to some members that are representative of the

main forecast scenario. This scenario is derived over a given time window W c<T . Indeed,
it  is  not  realistic  to  define  a  single  preferential  trajectory  constituted  of  the  same
members over the full  forecast leadtime. For the purpose of identifying this  scenario,
different clustering techniques can be applied: 

 Unsupervised standard clustering algorithms such as partition clustering (k-means
and  k-medoid),  hierarchical  clustering  (ascendant  HAC),  and  density  based
clustering (Dbscan).

 A  classification  method  designed  for  wind  power  application.  This  alternative
method is based on fixed categories derived from a wind turbine power curve: as
presented in Figure  9, four main categories are identified regarding the typical
wind speed U in ,  Unom ,   and  Uout.
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Figure 9: Fixed categories derived from a typical wind turbine power curve.
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For each clustering technique the largest cluster provides the preferential trajectory. A PD
forecast is then built from this reduced set of members, using the optimized percentile
method described previously.

The clustering time window  W c is set to 1 hour, 3 hours and 6 hours. Each clustering

technique requires to set some parameters, which sensitivity has been tested as well. The

three approaches require an optimization step, based on the training period  Dtr which

aims at finding the optimal percentiles, or at building a rank histogram and computing
weights.  For  the  percentile  optimization,  the  forecast  score  minimized  is  the  mean
absolute error (MAE) which generic formula is given by :

MAE=
1

DKT
∑
d=1

D

∑
k=1

K

∑
t=0

T

|yd ,k , t−xd , k ,t|

Practically,  we  compute  the  MAE for  each  percentile  from  the  5th to  95th percentile
(interpolated from the full cumulated probability distribution), with increments of 5% and

keep the percentile which gives the minimum of the MAE obtained. The time window W q

is set to 1 hour. The time window W closest , used to find the ensemble member closest to

the optimal percentile, varies from 1 hour to 6 hours. Using larger window size like 6
hours improves the forecast temporal continuity, with the risk to deviate further from the
optimal solution. As for the leadtime dependent percentile optimization method, the time

window W r to derive rank histograms for the weighted mean method is set to 1 hour. 

The methods for deriving a PD forecast have been applied to the 100-meter wind speed
forecasts  provided  by  the  high  resolution  AROME-EPS.  The  derived  PD  forecasts  are
compared  to  the  operational  AROME deterministic  forecast.  The  evaluation  of  PD
forecasts is performed against observed wind speed measurements described previously.
The periods considered for the training and evaluation range from the 01/08/2019 to the
31/08/2019 and from the 02/02/2020 to the 16/03/2020, hereafter named Summer 2019
and Winter 2020, respectively (Table 2).

2.3.2. Results
The forecasts are assessed regarding the RMSE and the bias defined as follows : 

biast=( y t−x t ), then averaged over D, and K

RMSEt=
1
D∑

d=1

D

√ 1
K ∑

k=1

K

( yd ,k , t−xd , k ,t )
2

The evaluation of the different methods shows that:

 The optimized percentile is generally around 30-40%, especially over Winter 2020.
This relatively low value is related to the ensemble’s slight over-estimation of the
wind speed values.

 Using a single member closest to the optimized percentile highly degrades the
RMSE  of  the  forecast,  compared  to  using  the  optimized  percentile  directly.
However, it shows a good ability to represent the high frequency variability of the
wind speed.
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 The  clustering  step,  regardless  of the  method,  generally  degrades  the  RMSE,
compared to direct estimation of the optimized percentile.

 The weighted mean has a better performance (as measured by the RMSE) than
the standard (equally weighted) mean forecast.

 The  best  method  in  terms  of  RMSE  improvement  is  the  location-dependent
optimized percentile method. This method is also better than the ensemble mean
in representing the high frequency variability of the wind speed.

Figure  10 shows the  bias  of  the  ensemble  mean  forecast  (black),  the  AROME
deterministic  forecast (red) and the PD  forecast (green, location-dependent optimized
percentile), for both Summer 2019 and Winter 2020 periods. Over both periods, the PD
forecast allows to reduce the average bias compared to both the ensemble mean and
AROME deterministic  forecast.  However,  over  Summer  2019,  the  bias  shows a  large
diurnal  cycle.  The  PD  forecast  only  reduces  the  average  bias,  without  reducing  the
amplitude of the diurnal cycle. Using the leadtime-dependent optimized percentile allows
to better correct the bias over Summer 2019. However, it increases the RMSE over Winter
2020. 

The improvement of a forecast for a given score S regarding a reference forecast is given
by the following formula: 

I S= (Sref−S for )/ Sref ,

with  Sref  the score of the reference forecast (here the ensemble mean or the AROME

deterministic  forecasts),  and  Sfor the  score  of  the  forecast  considered  (here  the  PD
forecast).

Figure  11 displays  the  improvement  in terms of  RMSE obtained with the  PD forecast
compared to the ensemble mean and AROME deterministic forecasts. Dashed red lines
highlight the KPIs of 10% and 15% improvement aimed by the Smart4Res project  (KPIs
1.1.b and 1.1.c: improvement of weather forecasting performance at next-hour and next-
days horizons, cf. Smart4RES Deliverable D1.1 for more details). Compared to the AROME
deterministic forecast, the PD forecast allows to reach the project's objectives and even
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Figure 10: Normalized bias obtained from the AROME deterministic forecast (red), the ensemble mean forecast (black) and the

PD forecast (green), as a function of the leadtime of the forecast : (a) for Summer 2019 period (b) for Winter 2020 period.
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overshoot them for some leadtimes. Compared to the ensemble mean forecast, the PD
forecast  allows  to  almost  reach  the  10% objective  over  the  Winter  period  2020.  On
average,  over  both  periods,  the  improvement  with  respect  to the  ensemble  mean
forecast amounts to 4%.

The same approaches have been tested for  deriving  a  PD forecast of the irradiance. A
dataset of 72 meteorological station of Météo-France have been considered. The result of
this  study  shows  that  the  optimal  method  for  irradiance  is the  leadtime  dependent
weighted mean method.  The improvement  in terms of  RMSE  over Summer 2019 and
Winter 2020 for day 1 and day 2 of forecast are given in Table 3. The improvement over
the ensemble mean reaches 12% over Summer 2019 for day 1, and 15% over the AROME
deterministic forecast. Over Winter 2020, the improvement remains lower.

Table 3: RMSE improvement obtained for irradiance PD forecast using leadtime dependent weighted mean

method, for Summer 2019 and Winter 2020.

RMSE improvement

(in %)

Summer 2019 Winter 2020

Day 1 Day 2 Day 1 Day2

Over ensemble mean
forecast

12.1 11.1 4.0 3.3 

Over AROME
deterministic forecast

15.6 12.9 9.3 12.1

2.4. RES-oriented decision support tools

Another way to summarize the large ensemble information is to design decision support
tools (DSTs) customized to end-users needs. Four DSTs are proposed and detailed in this
section. They include two products giving access to the uncertainty and variability of the
wind speed, which should help market trading strategies by better addressing risks of
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Figure 11: RMSE improvement with respect to the AROME deterministic forecast (dashed green curve) and the

ensemble mean forecast (solid green curve) as a function of the leadtime of the forecast : (a) for Summer 2019

period (b) for Winter 2020 period. The dashed red lines displays the KPIs targeted by the Smart4RES project.
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extreme wind variations. Two other products address two specific events, namely the risk
of wind speed exceeding the cut-out, and ramping events. Both are of high importance
for wind farm operation and power system balancing.

2.4.1. Uncertainty
The uncertainty of the forecast is represented by the dispersion of the members in the
ensemble. The dispersion of the ensemble generally increases with the forecast leadtime.
The uncertainty of a forecast can be measured by the confidence interval range between
centered percentiles, e.g. the interquartile range (IQR) gives the range between the 25th

and 75th percentiles (the interval is centered around the median). It is often more useful
to give a measure of a larger interval, for instance the 90% confidence interval range,
because it  addresses the extremes of the distribution (Figure  12).  The coverage of  a
confidence interval is the percentage of observed values contained in the interval. If the
ensemble is calibrated and of large enough size, the coverage should converge to the
interval confidence, e.g. the coverage of the 90% confidence interval should tend to 90%.
The IQR and the 90% confidence interval coverages over both Winter 2020 and Summer
2019,  over  all  locations,  and  all  leadtimes,  are  given  in  Table  4.  It  shows  that  the
ensemble  is  overconfident  as  the  intervals  are  undercovered.  This  is  due  to  the
underdispersive behaviour of the ensemble. 

Table 4: Interquartile range and 90% confidence interval coverages

Summer 2019 Winter 2020

IQR coverage 0.46 0.42

90% CI coverage 0.82 0.78
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Figure 12: Example of 90% confidence interval given by the ensemble (dashed lines). The observed wind speed is

shown in blue, the ensemble mean is given by the black solid line, and the PD forecast by the green solid line.
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2.4.2. Sub-hourly variability
As explained in the previous section, the PD forecast extracted from the ensemble does
not properly represent the high frequency variations provided by the 5 min outputs. In
addition to the PD forecast, it is proposed to provide time series of sub-hourly variance of
the wind speed forecasts computed as follows.

Each member ym of the ensemble is decomposed into a slowly varying signal  ym and a

high frequency signal ϵm using a rolling mean filtering over a one-hour time window. The

sub-hourly variability is given by the standard deviation of  ϵ  over the considered time
window W and among the members :

 σ sh (h )=
1

NW
∑
m=1

N

∑
t=h

h+W

(ϵm,t−ϵ )
2
,

with ϵ  the average value of the high frequency signal over W and the ensemble. The time
window W is set to 1 hour,  a key timescale for trading strategy. The final DST product
provided to the end-user is the hourly (and 30 minutes) timeseries of 2σ sh. The value of

2σ sh represents the variability associated with the smooth PD forecast; it is a forecast of
the  variability,  while  the  confidence  interval  is  a  measure  of  uncertainty.  Figure  13

displays an example of the interval +/- 2σ sh provided by the ensemble. 

2.4.3. Probability to exceed the cut-out wind speed
Several  extreme events  are of  concern for  wind energy producers.  Among them,  the
probability to exceed the cut-out wind speed is of high importance as it results in a very
fast decrease of the wind production, and/or put at risk the turbine itself. We define the
following event: "The wind speed exceeds the cut-out wind speed (W out) within a given
hour”. The idea is to use the high-resolution AROME-EPS ensemble, and in particular the
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Figure 13: Example of the 2σ sub-hourly variability (W=1hour) forecasted by the ensemble (dashed green

lines). The observed wind speed is shown in blue and the PD forecast in green.
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high  frequency wind variations,  to  give the  probability  of  this  event  to the user.  We
compute for each member the probability pm of the event: the probability equals 1 if the

W out  is  reached  for  at  least  one  time  step  during  the  hour.  We  then  compute  the

probability pe of the event in ensemble :pe=
1
N
∑
m=1

N

pm.

Figure  14 shows an example of such probability forecasted for the 29/02/2020. In this
example,  such  an  event  is  observed  around  leadtime  15h.  No  deterministic  forecast
(AROME, ensemble mean, and PD forecast) does predict the event, while in the ensemble
several members capture this extreme event. 

A  more  comprehensive  comparison  of  the  deterministic  forecasts  skill  regarding  the
ensemble shows a clear advantage of using the ensemble information. 

The final product provided in this cas is the probability pe, from which the end user can

easily build a binary event forecast according to its own requirements.

2.4.4. Probability of ramping events
Ramping events are defined by a large and sudden change in production due to abrupt
variations of the resource (and/or cut-out exceeding). The proposed product is limited to
the  wind  speed  variations,  and  thus  does  not  address  non-linearities  induced  by
transformation from wind to power. However, it still contains valuable information for the
end user. Several ways to define and detect ramping events exist in the literature. We
use the so called “fixed time interval” method for ramp detection (Bianco et al. 2016).
This  simple  method is  based on the derivative  of  the  wind speed over  a  given time
window (t ,t+Δt), to measure the increase or decrease of the wind speed :  

 S (t )= y ( t+Δt )− y (t ) 

28

Figure 14: Example of  forecasted pe (purple). The observed event is displayed in light blue.

The observed wind speed is displayed in blue,  the AROME deterministic forecast in red, the

ensemble mean forecast in black and the PD forecast in green.
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The  function  St is  then  tested regarding  a  threshold  S0 to  decide  whether  a
positive/negative ramp event occurs or not. We define the two timeseries  I + and  I - of
positive and negative ramps occurrence, respectively : 

I t : t+Δt

+ =         1  if S (t ) ⩾S0

                     0  elsewhere

      I t : t+Δt

- =         1  if S (t ) ⩽  −S0

                     0  elsewhere

Note that if a  I t is filled by a 1 at an iteration step, the value 1 can not be changed

afterwards. A schematic example of filling  I + is shown in Figure  15. Each ramp is then
characterized by its timing (ramp centre), its duration (window with consecutive 1 in the
timeseries I + and I -) and its amplitude (difference between wind values at the end and at
the beginning of the ramp). 

The parameters are here set to Δt=3hours and S0=6ms− 1 which correspond to a typical

time window in the literature, and to about 50% of the  rated wind speed (wind speed
value for which rated power is obtained). Other settings or other ramp definition can be
used depending on user requirements. 

This  ramp  detection  method  is  applied  to  observations  and  to  each  member  in  the

ensemble. Thus, for positive ramps, we obtain for each member a timeseries Im
+ , as well
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Figure 15: Schematic example of the filling of I+. The blue curve represents the wind speed (y-axis on the left),

and the red line represents I+ (y-axis on the right). At the first iteration (in yellow), a ramp is found, so that I+ is

filled by 1 over t:t+Δt ; at the second iteration, a ramp is still found, so that a 1 is added at timestep t+Δt+δt ; at

the third iteration, no ramp is found : I+ is set to 0 for timestep t+Δt+2δt.
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as for negative ramps  Im
- .  Following the work of Bossavy et al. (2012), we compute the

proportion of members forecasting a ramp at any leadtime of the forecast, to obtain a
probability of ramp at each timestep of the forecast. For instance for positive ramps : 

Pt (ramp+ )=
1
N
∑
m=1

N

I t , m
+   

Several  approaches  to  define  a  single  ramp  event  from  the  ensemble  forecast  are
proposed in Bossavy et al. (2012). Following one of them, a single event is considered
forecasted by the ensemble when the probability of ramp P (ramp+ ) or P (ramp -) reaches
local maxima. In order to define the characteristics of each single ramping event (i.e. its
timing, duration, and amplitude), we average the characteristics of the ramp forecasted

by all members which timeseries Im equals 1 at time tmax of the local maxima. An example
of positive and negative ramping event forecasts is shown in Figure 16.
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Figure 16: Observed and forecasted ramping events at one wind turbine in France, on the 12/02/2020 for

(a) positive ramps (b) negative ramps. The red and blue dashed vertical lines indicate the observed ramp

centers, and orange and purple dashed vertical lines, the forecasted ramp centers. The blue and red dots

indicate an observed ramp. The orange and purple dashed lines represents the probability of ramp

P(ramp+) and P(ramp-).
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2.5. Seamless ensemble forecasts

For stakeholders who are interested in using the full  ensemble information from  both
AROME-EPS and ARPEGE-EPS,  an approach is presented that combines both systems in
order to  provide seamless ensemble forecasts over the whole forecast range (4 days).
The  proposed  method  takes  advantage  of  the  enhanced  performance  of  the  high-
resolution  AROME-EPS  for  short  leadtimes,  while  providing  a  smooth  transition  (with
limited temporal discontinuities) to larger-scale ARPEGE-EPS for longer lead times. 

2.5.1. Data set
This study focuses on wind turbines at 100m. Weather data are extracted from AROME-
EPS and ARPEGE-EPS for February 2020. The forecasts from ARPEGE-EPS were linearly
interpolated to a frequency of 5 min to match those of AROME-EPS. 

The observations used come from 36 turbine measurements taken at exactly 100 m (red
points in Figure 8).

2.5.2. Seamless design
 The seamless design follows the method described in Aleksovska et al. (2021): 

 over the forecast period 0-51h only the 25 members of the AROME-EPS are used,

 for longer ranges each member of the AROME-EPS is paired with a member of the
ARPEGE-EPS according to some assignment rules,

 the selection of paired members, described below, is designed to minimize the
discontinuities at the merging time  (Figure 17).

This configuration is motivated by the higher performance of AROME-EPS over its forecast
period (documented in Section 2.5.3). 

The assignment is based on distance measurements between the AROME and ARPEGE
members. For that purpose the Dynamic Time Warping (DTW, Berndt and Cliford, 1994) is
used, and is computed over a period of length W  before the merging time. In a second
step  an  assignment  algorithm  selects  the  target  members  with  the  objective  of
minimizing the merging discontinuities, based on the computed DTW. This is an intuitive
approach, which ensures a smooth transition between two predictions. 
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Figure 17: Schematic representation of the seamless junction between the AROME and ARPEGE ensemble forecasts.
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The assignment  method  chosen uses  the  Kuhn-Munkres  algorithm (Kuhn,  1955),  also
called the Hungarian method  (HU), that finds the optimal bijective match between two
samples  in order to  minimize  the  total  distance  of  the  assignment.  Given a distance
measure d , let d ij be the distance between member i (from the AROME-EPS of size N) and

member  j (from the ARPEGE-EPS of  size  M ).  The Hungarian  method  finds,  for  each
member i of the AROME-EPS, the corresponding member ji of the ARPEGE-EPS as: 

ji=argmin j∑
i=1

N

d ij , j=1,…,M

2.5.3. Results
This  section  presents  an  evaluation  of  the  seamless  design  for  100  m  wind  speed
forecasts, following two criteria:

 The probabilistic performance of the seamless ensemble is assessed with the
commonly-used CRPS score (Candille et Talagrand,  2005; Matheson et Winkler,
1976),  that  measures  the  distance  between  the  forecast  and  observation
distributions  (Figure  18).  Let  F=P [ X≤ x ] be the distribution function associated

with an ensemble forecast X  and F0=1
[X ≤ x0 ] be the distribution function associated

with the reference x0  (which is then a step function), the CRPS is defined by :

                                                        CRPS (F ,F0 )=∫
R

(F−F0 )
2dx 

The CRPS is a measure of reliability of the forecast, it measures how close the
forecast  is  to  the  observation  at  a  given  location  and  forecast  time.  In  the
remainder of this  section the CRPS values are averaged spatially  (for  different
wind farms)  and temporally (for  different forecast  dates)  in order to provide a
more robust forecast evaluation. 

The  lower  the  CRPS  the  better  the  ensemble.  The  statistical  significance  is
calculated using the Wilcoxon score (Wilcoxon et al., 1963).
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Figure 18: On the left the probability distribution of the forecast (red curve) and the reference (black vertical line),

on the right the associated distribution functions. The CRPS corresponds to the area between the two distribution

functions (shaded area). The horizontal axis represents the variable to be predicted. Source :  (Herbasch.,2000).
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 The  temporal continuity of the seamless ensemble is assessed by computing
the average forecast difference at the merging time :  

Δ=∑
i=1

N

|( f i (51h )− f j (51h05 ) )|

where f j is the prediction of the  ith member of the seamless ensemble after the
merging time. The lower this difference the better the merging.

The seamless design will also be evaluated against a simple benchmark that randomly
selects  the  ARPEGE-EPS  merging  members,  without  repetition  (Wetterhall  and  Di
Giuseppe, 2018). This method is referred to as random neighbor (RN).

Figure 19 presents the distribution of forecast differences at the merging time for the HU
and RN strategies. The differences obtained with the ARPEGE-EPS members, which are by
construction  seamless  scenarios,  are  taken  as  reference.  As  expected,  the  largest
differences are obtained with the RN strategy, while the discontinuities observed with the
HU  assignment  are  much  smaller  and  close  to  those  observed  in  the  ARPEGE-EPS
forecasts. These results therefore indicate that the seamless design with the HU method
is able to generate realistic forecasts with limited temporal inconsistencies.

The probabilistic performance of the ensembles obtained with the different connection
strategies  are  evaluated against  the  performance  of  the  raw ARPEGE-EPS.  The CRPS
presented in Figure  20 shows that over the first  48 hours of forecast,  the use of the
AROME-EPS forecasts leads to an average improvement of the CRPS. The HU strategy
outperforms the RN strategy in the vicinity of the merging time (between 51h and 51h05
lead times). For longer leadtimes both strategies have similar performances.
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Figure 19: Distributions (in the form of box plots) of the absolute differences in predicted  wind speed (averaged

over all ensemble members) between the 51h and 51h05min, calculated for 36 wind turbine farms over the

period 01/02/2020-29/02/2020. These distributions are presented, from left to right, for the ARPEGE-EPS

members and for the members of the RN and HU (with W=3h) seamless ensembles.
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A visualization of an ensemble of 100-m wind speed forecasts obtained with the HU and
RN  strategies  is  shown  in  Figure  21.  These  plots  confirm  the  previous  evaluation,
indicating smooth transitions with the HU design compared to much larger discontinuities
obtained with the RN merging. 

34

Figure 20: CRPS of 100-meter wind speed  forecasts as a function of forecast leadtime . The scores are calculated for

the 36 sites described in the experimental design over the period 01/02/2020-29/02/2020 for both strategies HU

(with W=3h) and RN and the ARPEGE-EPS raw ensembles. The + (resp. -) signs indicate that the performance of

AROME-EPS is statistically better (resp. worse) than the performance of ARPEGE-EPS, according to the Wilcoxon test.
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Finally,  an  analysis  of  the  impact  of  W,  the  length  of  the  period  chosen  for  the
assignment, is shown in Figures 22 and 23. It seems that the shorter W the smaller the
merging discontinuity is. On the other hand,  larger W (24h) seems to provide slightly
better forecasts at longer lead times. An evaluation over a longer period and different
seasons will be conducted to improve the robustness of these results. Taking both criteria
into account it seems that an optimal value is reached for W=3h. However, the criteria
must  be  evaluated  over  other  time  periods  as  well,  in  order  to  obtain  more  robust
statistics to make the optimal choice for W.
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Figure 21:  Ensemble of seamless forecasts constructed with (top) HU method, (bottom) RN method. Start date of

the forecast is 01/02/2020, at 21:00 in Park 2040. Each seamless member is initialized by an AROME-EPS forecast

(in pink) and then connected to an ARPEGE-EPS member (in orange) at 51h. The distances between members are

computed over the last 3 hours of the common period (from 49h to 51h lead-time).
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Figure 22: CRPS of 100-meter wind force forecasts as a function of forecast time frame. The scores are

calculated for the 36 sites described in the experimental design over the period 01/02/2020-29/02/2020 for

both strategies HU (W=3,6,9,12 and 24h) and the ARPEGE-EPS raw ensembles. The + (resp. -) signs indicate that

the performance of AROME-EPS is statistically better (resp. worse) than the performance of ARPEGE-EPS,

according to the Wilcoxon test.

Figure 23: Distributions (in the form of box plots) of the absolute differences in predicted wind speed (averaged

over all ensemble members) between the 51h and 51h05min, calculated for 36 wind turbine farms over the

period 01/02/2020-29/02/2020. These distributions are presented for various time windows W.
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3. Towards RES-oriented weather services

As NWP models are initially designed to accurately forecast the variables of interest to
ensure the safety of goods and people,  national  weather services have so far  mainly
focused on monitoring the quality of a reduced set of parameters. These variables are
chosen  either  to  check  the  overall  quality  of  the  weather  processes  modelled  (for
example low and mid troposphere air temperature and geopotential),  or to check the
quality of the main parameters at stake for the safety of goods and people (for example
2-meter  air  temperature,  wind  gusts,  precipitation,  mean  sea  level  pressure,  storm
occurrence).

However, NWP models can predict many other variables and at nearly any vertical level
either because these variables are used in the computations,  or because they can be
determined using diagnostic equations with some of the main NWP outputs (see Section
1.2). Even though the quality of these variables is not directly monitored, their validity is
ensured by the physical approach of NWP modelling, which provides consistency among
all  atmospheric  variables.  This  is why most NWP variables can be used as inputs  for
diverse applications such as renewable energy production forecasting (e.g.  using 10 to
200-meter wind speed or solar irradiance).

General enhancements of the model usually  are beneficial for all variables, or at least
some of them without significantly deteriorating the others.  However,  since not every
output  variable  is  monitored,   the  impacts  of  such  modifications  are  not  always well
identified. The lack of measurements for all variables with a sufficient geographical and
temporal coverage makes the evaluation process even more difficult and uneven among
variables. Moreover, because these variables are not sufficiently evaluated by national
weather  services,  the  improvement  of  their  quality  is  not  usually  part  of  the  goals
targeted by further model developments. This leads to a situation of a vicious circle, “no
evaluation / no improvement”, which is a major obstacle in the enhancement of weather
prediction for RES generation in particular. In this section we  discuss long-term efforts
that could improve the quality of weather services for the RES sector.

3.1. NWP models evaluation and monitoring

A first step to specifically improve the quality of weather prediction for RES purposes
could be to include more end-user oriented variables and quality  indices in the NWP
evaluation and near-real-time monitoring processes:  global  and direct  or  diffuse solar
horizontal irradiance for solar power production and wind speed at levels between 50 and
200 meters for wind power production for example.

Power generation forecasters also seem interested in information about the quality of
weather forecasts in real time to better monitor their installations or evaluate their own
forecasts, and later on to work on their models improvement. Indeed, distinguishing the
errors resulting from their modeling approach from those due to weather forecasts errors
is key.

Monitoring more variables however raises the issue of the availability of measurements to
be used as  references for  the computation  of  scores.  Most  national  weather services
operate a ground station network to get measurements of near surface parameters, but
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the density  of  stations  equipped with the adequate  sensors  differs depending on the
parameter.  In  France for  example,  more than 2000 stations  measure the 2-meter air
temperature, but less than 200 measure global solar irradiance and less than 10 measure
direct solar irradiance.

Solar irradiance measurements can relevantly be supplemented by satellite observations,
however, this is not yet possible for other variables of interest such as wind speed at 50-
200 meters. The density of weather stations measuring wind speed in the networks is
usually  satisfying  for  most  use  cases,  but  these measurements  are  only  available  at
around 10 meters above the ground. The quality of 10-meter wind speed forecasts is not
necessarily meaningful for the quality of the 100 or 200-meter wind speed forecasts, and
meteorological masts or LiDARs capable of measuring the wind speed at such level  are
quite sparse and usually operated by researchers or end-users, rather than by national
weather services themselves. However, national weather services have already decided
to install dedicated sensors and weather stations at certain locations in order to meet one
of their specific users’ requirements, aeronautics. The measurement networks could thus
also be adapted to meet other users’ needs, such as the RES production industry, by
installing  and  maintaining  their  own  100-meter  wind  masts  all  across  the  region for
example.

Wind farms are generally equipped with anemometers on the turbines, and pyranometers
are sometimes installed next to solar plants. Since the number of RES plants is growing
quickly  around the world,  they might  represent  a crucial  opportunity  in RES oriented
weather  monitoring,  if  their  measurements  were  to  be  shared  with  the  weather
community. More generally, collecting, filtering and adapting as much data as possible
from all available sources (other scientific communities, end users, crowd sourcing, smart
objects)  to  draw  useful  information  to  correct  weather  observations,  as  done  by
Mandement  and  Caumont  (2020),  or  forecasts,  is  one  of  the  biggest  challenges  and
opportunites for the weather community for the next decade. Some data sharing and
data market related issues are tackled in the WP 4 of Smart4RES. 

An example of an operational application for RES-oriented NWP monitoring could be a
platform  where  real  time  and  climatological  evaluation  of  NWP  forecasts  would  be
conducted for a certain set of variables at stake for the RES, including data from weather
services as well as data from the end-users (for example anonymized or individualized).
This  kind  of  applications  would  also  stimulate  RES-oriented  activities  in  the  NWP
modelling community and help to collect feedback from NWP output end-users through
the shared data and experiences. Feedback from end-users is indeed of great value for
NWP modelers who are not always the best informed regarding the qualities and limits of
their models in operational use: the weather community has a lot to gain from a better
collaboration  and  easier  exchanges  with  other  scientific  communities  and  especially
those using weather data in their applications.

3.2. RES-dedicated NWP models

Beyond evaluating models with respect to variables of particular interest for end users,
the models themselves could be designed to outperform current operational models for
such variables. However, apart from general improvements such as horizontal or vertical
resolution increases, it is generally quite difficult to greatly improve the quality of some
specific variables without deteriorating the quality of others, which is part of the reason
why NWP improvements appear to be quite modest most of the time. This comes from
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the tuning process that sometimes simply  results in the  best compensations ensuring
balance between imperfect parametrizations. As a consequence a significant change in a
physical parametrization could cause a rupture in this balance between parameters and
therefore deteriorate the overall performance of the model, even though the change was
initially proven to increase the performance of the targeted process.

Innovative methods to optimise parameterizations in an NWP model based on machine
learning,  such  as  the  tools  developed  in  the  framework  of  the  High  Tune  project
(Couvreux et al., 2021), could support the joint improvement of the radiation, turbulence
and  microphysical  schemes  and  their  interactions,  which  are  essential  to  accurately
forecast solar irradiance and 100-meter wind speed.

Data assimilation also plays a crucial role in the quality of the forecasts, especially at
short-term.  There  is  room  for  improvement  in  the  assimilation  impacting  the  main
variables  of  interest  for  the  RES purposes,  in  particular  for  solar  power.  Indeed NWP
models do not currently assimilate ground measurements of solar  irradiance or cloud
cover. Assimilation of data in cloudy conditions is still an active field of research and a
major challenge for the NWP community. This challenge will be addressed in more details
in the deliverable D2.4. Data from end-users of the energy sector could then not only be
beneficial for the real-time monitoring of NWP models, but also to refine their operational
initial states, with expected improvement in the forecasts.

Another approach to improve the quality of NWP models for the RES is to design and
operate distinct dedicated models depending on end-users. This is why Jimenez et al.
(2016) recently developed the WRF-Solar model and its ensemble version. This approach
could be pushed further by optimizing and tuning the parameterizations of a specific NWP
model version, only considering the variables of interest for a certain profile of users. For
example, Météo-France could develop a “SolAROME” model,  that is the AROME model
tuned  to  forecast  solar  irradiance  and  other  variables  important  for  the  solar  power
community  as  accurately  as  possible,  even if  this  may imply that other variables are
slightly  deteriorated.  This  idea  as  presented  here  would  however  be  quite  costly  in
human and computing resources since it would require to develop, tune, maintain and
run several versions of a NWP model at the same time for every type of user. This can be
considered the future of NWP, which the ever growing computing capability could enable.

3.3. Weather services for the RES sector

Besides NWP, the weather forecast community can provide more innovative dedicated
services to the RES end-users. A first way of improvement is the development of quicker
and easier access to the weather  forecasts, using APIs and data platforms capable of
handling the very large amounts of data generated by NWP models and their ensemble
versions in particular. These tools should facilitate the integration of weather data in the
end-users’ applications,  help to reduce the transfer time of the data in real  time and
optimize their longer term storage and retrieval.

To partially avoid the problems caused by the large volumes of data and to help end-
users exploit ensemble data more efficiently, post-processing techniques can be applied
to summarise the information of many ensemble members into a reduced number of
scenarios. This was investigated in Section 2.3 for instance. 
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Post-processing methods are currently often applied to improve the overall quality of the
forecasts,  using machine learning techniques,  and would still  be relevant  even if  the
quality of the NWP outputs was refined by some of the means described above. These
techniques  include  ensemble  calibration  to  correct  biases  and  improve  dispersion  as
presented in Taillardat and Mestre (2020), or seamless ensemble junction as described in
Section 2.5 for example. More general post-processing methods, non-specific to ensemble
forecasts, can also still be relevant to take into account local conditions around the end-
users’ site more precisely by using their data in the training, or to correct very short term
forecasts  by  merging  measured  data  with  NWP forecasts  for  instance,  which  will  be
detailed in deliverable D2.3. 

Finally, the quality of a weather forecast substantially relies on the “human-in-the-loop”
or “human-over-the-loop” approach. Weather experts are able to:

• analyze the current atmospheric situation and possible scenarios predicted for the
following hours and days,

• determine which scenario is the most likely to happen, or describe alternatives to
an initially deterministic forecast,

• correct known errors in the models occurring in certain specific weather types and
locations.

This human expertise could be extended to specific end-user’s needs and stakes (as it is
currently done for aeronautics) via:

• translating the forecasts and uncertainties into a more understandable message if
the customer is not a weather expert (useful for grid management or solar power
plant operating),

• sorting out and summarizing the information relevant for this user’s specific field
of application among different models’ forecasts and available outputs.

Although this would require a specific training for these specialized forecasters it could 
bring an additional gain in quality of the forecasts and in their use along with the deeper 
NWP model improvements and post-processing methods described before.
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Conclusion and outlook

In this report  we have presented the  relevant  information that NWP models currently
provide for RES forecasts.  Through a detailed description of how NWP models work, we
have highlighted how the latter could be improved to better match the needs of the RES
sector.  This can be achieved in various ways. First, NWP models can be improved by
refining the physical  parametrizations  that drive the key atmospheric  variables,  or  by
providing more physically-relevant diagnostics that could be useful to a variety of end-
users. It is also possible to design new tools to extract the most critical information from
the wealth of information contained in new ensemble simulations that tend to become
the standard of NWP. These tools include building probabilistic products of high interest
for the final users, or optimally condensing the information in a readily accessible format.
Finally we have shown that NWP models dedicated to RES forecasts could be developed,
and that forecasters could be trained to develop a specific expertise on that topic. This
highlights the high potential of NWP models to tackle RES-related issues, with stimulating
scientific challenges and beneficial exchanges between users who know the caveats of
the models and model developers who can more efficiently refine the models when they
know their defaults.

All these potential improvements rely on enhanced interactions between the atmospheric
modeling community and the end-users. As a matter of fact, end-users should not be
limited  to  using  the  commonly  available  information  provided  by  NWP  models,  they
should actively participate to the design of NWP models and post-processing tools. The
aeronautics  sector,  one  of  the  main  customer  of  weather  services,  has  for  instance
become fully involved in the development of NWP models, so that cutting-edge research
on the physical parametrizations is now directly driven by this community, and a variety
of diagnostics (near-surface visibility, icing in altitude etc.) have been developed for their
needs. We believe that such enhanced communication between communities, along with
shared  experience,  is  key to  an  efficient  improvement  of  NWP products  for  the  RES
sector, and unique to the Smart4RES consortium which gathers experts from the whole
value chain of RES production.

The  proposed  strategies  have  already  resulted  in  quantitative  improvements  of  the
performance  of  NWP  models  compared  to  currently  available  operational  weather
forecasts, with reductions of the RMSE in the range 10-20% for wind and solar irradiance
forecasts,  depending on the periods and locations.  There are various paths to further
improve these performances. First, physical parametrizations could be further refined in
the light of RES variables. In particular, cloud physics could be revisited with the primary
goal of correctly simulating the cloud transmittance while generally precipitation is the
variable used to evaluate cloud parametrizations. Second, the evaluation of NWP models
in terms of RES should become systematic, so that the model developers could get more
insight into the defaults of their models that affect RES prediction. Finally, a big challenge
of  the  upcoming years  is  to  fully  take advantage of  the  numerous  power  production
measurements available throughout territories.  Such measurements,  which outnumber
standard meteorological ground measurements, can be considered as proxys of weather
variables, and as such could be assimilated in NWP models. These perspectives stress
that much can be done to further improve RES forecasts.
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