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Executive summary

This Deliverable Report presents the work developed by INESC TEC and DTU in the framework of
Task 4.1 (“Distributed and collaborative forecasting”) from Smart4RES project. The aim of this Task
was to rethink forecasting problems with geographically distributed renewable energy sources
(RES) data (power measurements, grid of weather predictions, etc.) by reformulating them as
distributed learning problems, considering aspects such as data privacy/confidentiality, online
learning, and probabilistic forecasts (including conditional distribution’s tails). The following para-
graphs present a summary of the develop work and main outcomes.

Extreme Conditional Quantile Forecasting. Probabilistic forecast of distribution tails (quantiles
with nominal proportion below 0.05 and above 0.95) is challenging for non-parametric ap-
proaches since data for extreme events are scarce. A poor forecast of extreme quantiles can
have a high impact on various power system decision-aid problems. An alternative approach
more robust to data sparsity is Extreme Value Theory (EVT), which uses parametric functions
for modeling distribution’s tails. In this work, we apply conditional EVT estimators to historical
data by directly combining non-parametric models with a truncated generalized Pareto distri-
bution. The parameters of a parametric function are conditioned by covariates such as wind
speed/direction from a numerical weather predictions grid. The results for a synthetic dataset
show that the proposed approach better captures the overall tails’ behavior, with smaller devi-
ations between real and estimated quantiles. The proposed method also outperforms state-of-
the-art methods in terms of quantile score when evaluated using real data from a wind power
plant located in Galicia, Spain, and a solar power plant in Porto, Portugal.

Privacy-preserving algorithms for RES forecasting. Cooperation between different data owners
may lead to an improvement in RES forecasting quality – for instance, by benefiting from spatio-
temporal dependencies in geographically distributed time series. Due to business competitive
factors and personal data protection concerns, the data owners might be unwilling to share
their data. Hence, interest in collaborative privacy-preserving forecasting (or vertical federated
learning) is thus increasing. Firstly, this work starts by analyzing the state-of-the-art and unveils
several shortcomings of existing methods in guaranteeing data privacy when employing vector
autoregressive models for multivariate RES time series forecasting. The state-of-the-art methods
were divided into three groups: data transformation, secure multi-party computations, and de-
composition methods. The analysis showed that state-of-the-art techniques have limitations in
preserving data privacy, such as (i) the necessary trade-off between privacy and forecasting
accuracy, empirically evaluated through simulations and real-world experiments based on solar
data; and (ii) iterative model fitting processes, which reveal data after a number of iterations.
Secondly, in order to tackle this privacy issue, Smart4RES formulated a novel privacy-preserving
framework that combines data transformation techniques with the alternating direction method
of multipliers. This approach allows not only to estimate the model in a distributed fashion but
also to protect data privacy, coefficients and covariance matrix. Besides, asynchronous com-
munication between peers is addressed in the model fitting, and two different collaborative
schemes are considered: centralized and peer-to-peer. The results for solar and wind energy
datasets show that the proposed method is robust to privacy breaches and communication
failures, and delivers a forecast skill comparable to a model without privacy protection.

Online distributed learning and reconciliation in RES forecasting. Forecasting RES generation up
to a few hours ahead is of utmost importance for the efficient operation of power systems and
for participation in electricity markets. Recent statistical learning approaches exploit spatio-
temporal dependence patterns among neighboring sites but their requirement of sharing con-
fidential data with third parties may limit their use in practice. This explains the recent interest in
distributed, privacy preserving algorithms to high-dimensional statistical learning, e.g., for auto-
regressive models. The few approaches that have been proposed are based on batch learning.
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These approaches are potentially computationally expensive while not allowing the accom-
modation of nonstationary characteristics of stochastic processes like wind power generation.
Additionally, since many agents in power systems and electricity markets generate their own
forecasts, at various aggregation levels and independently of each other, these forecasts may
end up not being coherent. Smart4RES first closes the gap between online and distributed opti-
misation by presenting two novel approaches that recursively update model parameters while
limiting information exchange between wind farm operators and other potential data providers,
and then proposes an approach to the forecast reconciliation problem using a recursive and
adaptive multivariate least squares estimator, with equality constraints on the coefficients, which
guarantees the coherency property not only in-sample but also out-of-sample. A simulation
study allows the comparison of the convergence and tracking ability of both approaches. In
addition, a case study using a large dataset from 311 wind farms in Denmark confirms that on-
line distributed approaches generally outperform existing batch approaches, while agents do
not have to actively share their private data. Finally, the effectiveness of the reconciliation ap-
proach is then verified in a separate case study using a Danish wind energy dataset with 100
wind farms.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

4



D4.1 Distributed and Collaborative Forecasting

Table of contents
I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Extreme conditional quantile forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
II.2 Related Work and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
II.3 Background: Non-parametric and Parametric Methods . . . . . . . . . . . . . . . . . 13

II.3.1 Non-parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
II.3.2 Parametric Methods for Extreme Quantiles . . . . . . . . . . . . . . . . . . . . . 14
II.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II.4 Gradient Boosting Trees with a Truncated Generalized Pareto Model . . . . . . . . . 16
II.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.5.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
II.5.2 Wind Power Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
II.5.3 Solar Power Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III Analysis of the privacy-preserving algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
III.2 Privacy-preserving Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

III.2.1 Data Transformation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
III.2.2 Secure Multi-party Computation Protocols . . . . . . . . . . . . . . . . . . . . . 34
III.2.3 Decomposition-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.3 Collaborative Forecasting with VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
III.3.1 VAR Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
III.3.2 Estimation in VAR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III.3.3 Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
III.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV Federated learning for renewable energy forecasting . . . . . . . . . . . . . . . . . . . . . . 56
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
IV.2 Distributed Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
IV.3 Privacy-preserving Distributed LASSO-VAR . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IV.3.1 Data Transformation with Multiplicative Randomization . . . . . . . . . . . . . . 59
IV.3.2 Formulation of the Collaborative Forecasting Model . . . . . . . . . . . . . . . 60
IV.3.3 Tuning of Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IV.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IV.3.5 Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
IV.3.6 Extension to Short-time Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
IV.4.1 Very-short Term Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
IV.4.2 Short Term Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V Online distributed learning in wind power forecasting . . . . . . . . . . . . . . . . . . . . . . 75
V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
V.2 Modelling and forecasting framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V.2.1 From agents and their data to relevant models . . . . . . . . . . . . . . . . . . 77
V.2.2 Framework for distributed and online learning . . . . . . . . . . . . . . . . . . . 79

V.3 Online Alternating Direction Method of Multipliers (OADMM) . . . . . . . . . . . . . . 80
V.3.1 Coefficient estimation through a time-varying optimisation problem . . . . . . 81
V.3.2 Recursive updates of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V.4 Adaptive Distributed MIrror Descent Algorithm made
Sparse (Adaptive D-MIDAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

5



D4.1 Distributed and Collaborative Forecasting

V.4.1 Basics of the SMIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
V.4.2 Batch estimation with SMIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
V.4.3 Online distributed MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
V.4.4 Extending the distributed MIDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
V.5.1 Tracking of time-varying coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 92
V.5.2 Computational costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

V.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
V.6.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
V.6.2 Case study setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
V.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

V.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VI Online forecast reconciliation in wind power prediction . . . . . . . . . . . . . . . . . . . . 100
VI.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
VI.2 Forecast Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VI.2.1 Defining a Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
VI.2.2 Additive Coherency and Reconciliation . . . . . . . . . . . . . . . . . . . . . . . 102

VI.3 Forecast Reconciliation with Multivariate Least Squares Estimation . . . . . . . . . . . 103
VI.3.1 Multivariate Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 103
VI.3.2 Online Version of the Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VI.4 Application and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
VI.4.1 Case Study Based on a Danish Dataset . . . . . . . . . . . . . . . . . . . . . . . 105
VI.4.2 Forecast Verification Framework and Benchmarking . . . . . . . . . . . . . . . 107
VI.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VI.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VII Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
VII.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
VII.2 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
VII.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Optimal value of r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.1 No collusion between agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.2 Collusion between agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D Online Reconciliation: additional corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

6



D4.1 Distributed and Collaborative Forecasting

LIST OF TABLES
Table 1 Evaluated forecasting models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 2 Mean quantile forecasts for τ ∈ {0.99, 0.995, 0.999}. . . . . . . . . . . . . . . . . . 21
Table 3 Time period for training and testing folds (wind power dataset). . . . . . . . . . 22
Table 4 Relative quantile loss improvement (%) over the baseline models (wind power). 23
Table 5 Quantile loss for each model (lower is better), considering wind power dataset. 23
Table 6 Time period for training and testing folds (solar power dataset). . . . . . . . . . 26
Table 7 Relative quantile loss improvement (%) over the baseline models (solar power). 26
Table 8 Quantile loss for each model (lower is better), considering solar power dataset. 28
Table 9 Summary of state-of-the-art privacy-preserving approaches. . . . . . . . . . . 54
Table 10 Floating-point operations in Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . 63
Table 11 NRMSE for synchronous models, considering solar power dataset. . . . . . . . . 67
Table 12 Mean running times (in sec) considering solar power dataset. . . . . . . . . . . 68
Table 13 Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-

VAR over the LASSO-AR model, considering solar power dataset. . . . . . . . . . . . . 69
Table 14 NRMSE for synchronous models, considering wind power dataset. . . . . . . . . 71
Table 15 Mean running times (in sec) considering wind power dataset. . . . . . . . . . . 72
Table 16 Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-

VAR over the LASSO-AR model, considering wind power dataset. . . . . . . . . . . . . 72
Table 17 Impact of forecast reconciliation on the quality of the forecasts, based on

the SRMSE criterion [in % of nominal capacity] with related ISRMSE values [in %]. . . 109

LIST OF FIGURES
Figure 1 The proposed method uses different estimators for intermediate and extreme

quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2 Illustration of γ value in function of k. . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3 Overview of the proposed forecasting model. . . . . . . . . . . . . . . . . . . . 17
Figure 4 CDF for (x∗

1, x
∗
2) ∈ {(0,−1), (0, 0), (0, 1)}. . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 5 Comparison between GBT and QR. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 6 Improvement in terms of normalized absolute deviations. . . . . . . . . . . . . 20
Figure 7 Geographical representation of data collection points for real datasets. . . . 22
Figure 8 Boxplot for the wind power considering the division on Table 3. . . . . . . . . . 24
Figure 9 Deviation between nominal and empirical quantiles. . . . . . . . . . . . . . . . 24
Figure 10 Sharpness results for wind power data. . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 11 Illustrative forecast of extreme quantiles, considering wind power data. . . . . 24
Figure 12 Boxplot for the solar power considering the division on Table 6. . . . . . . . . . 27
Figure 13 Deviation between nominal and empirical quantiles. . . . . . . . . . . . . . . . 27
Figure 14 Sharpness results for solar power data. . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 15 Illustrative forecast of extreme quantiles, considering solar power data. . . . . 27
Figure 16 Common data division structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 17 Common data division structures and VAR model. . . . . . . . . . . . . . . . . . 41
Figure 18 Illustration of the data used by the i-th data owner when fitting a VAR model. 42
Figure 19 Transpose of the coefficient matrix used to generate the VAR-based data. . . 44
Figure 20 Mean ± standard deviation for the absolute difference between the real

and estimated coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 21 Improvement (%) of VAR2(2) model over AR(2) model. . . . . . . . . . . . . . . 46
Figure 22 Improvement (%) of VAR model over AR model. . . . . . . . . . . . . . . . . . . 46
Figure 23 Results for real case-study with solar power time series. . . . . . . . . . . . . . . 47
Figure 24 Distributed ADMM LASSO-VAR with a central node and 3 data owners. . . . . 49
Figure 25 Number of iterations until a possible confidentiality breach, considering the

centralized ADMM-based algorithm in (Zhang et al., 2019). . . . . . . . . . . . . . . . 51

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

7



D4.1 Distributed and Collaborative Forecasting

Figure 26 Error evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 27 Mean running time as a function of the number of agents. . . . . . . . . . . . 64
Figure 28 Impact of hyperparameters for h = 1, considering solar power dataset. . . . . 67
Figure 29 Cross-correlation plot (CCF) between two solar power plants. . . . . . . . . . . 68
Figure 30 Relative NRMSE improvement (%) over the baseline models, considering solar

power dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 31 Loss while fitting LASSO-VAR model, considering solar power dataset. . . . . . 70
Figure 32 GEFCom2014 wind power dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 33 Impact of hyperparameters for h = 1, considering wind power dataset. . . . . 71
Figure 34 Relative NRMSE improvement (%) over the baseline models, considering

wind power dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 35 Cross-correlation plot (CCF) between two wind power plants. . . . . . . . . . 72
Figure 36 Relative improvement [%] when comparing LASSO-VAR-AX (collaborative

model) with LASSO-AR-AX (non-collaborative model). . . . . . . . . . . . . . . . . . . 73
Figure 37 Relative improvement [%] when comparing LASSO-VAR-AX with GBT. . . . . . 74
Figure 38 Architecture of the distributed learning network . . . . . . . . . . . . . . . . . . 80
Figure 39 Horizontal (left) and vertical (right) partitioning of a matrix across S agents.

Both matrices have equal dimensions. Each column represents a unique feature
whereas a row is related to a time instance. . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 40 Flowchart for the Online ADMM (OADMM) approach for online distributed
learning applied to wind power forecasting. . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 41 Flowchart for the Adaptive Distributed MIrror Descent Algorithm made Sparse
(Adaptive D-MIDAS) approach for online distributed learning applied to wind power
forecasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 42 Coefficient estimates obtained through the Monte-Carlo simulation. Top row:
Adaptive D-MIDAS, bottom row: OADMM . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 43 Average learning rate of the Adaptive D-MIDAS across all 1 000 replicates.
Left a1 right a2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 44 Average time (over 1 000 time steps) required by each agent to complete its
tasks at a given time step, for both OADMM and Adaptive D-MIDAS approaches,
as a function of total number of agents S. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 45 Location of sites in Western Denmark. . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 46 RMSE skill score of the Adaptive D-MIDAS with reference to the persistence

forecast for 1-step ahead forecasts, as a function of the forgetting factor µ. The skill
score values are computed for the time stamps t = 10000 to t = 20000. . . . . . . . . . 97

Figure 47 RMSE (top row) and MAE (bottom row) skill scores for the online distributed
and batch learning approaches for different lead times. The skill score values are
computed over the evaluation period, from t = 20000 to t = 40000. The dots indicate
the mean of the skill score distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 48 Example of a 3-level hierarchy based on 5 individual sites, with S1 = {(1, 1)},
S2 = {(2, 1), (2, 2)} and S3 = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)}. . . . . . . . . . . . . . . . . 101

Figure 49 The 100 Danish sites selected from the complete Danish wind power dataset,
then divided into 4 regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 50 Incoherency, as expressed by (155), observed in the upper levels of the hier-
archy over a randomly chosen period of 2 weeks. . . . . . . . . . . . . . . . . . . . . . 108

Figure 51 Distribution of improvements (ISRMSE) for bottom nodes and for the 3 fore-
cast reconciliation approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 52 Evolution of randomly chosen coefficient (for sites 25,31 and 96) contributing
to obtaining the reconciled forecasts at total level. . . . . . . . . . . . . . . . . . . . . 110

Figure 53 IWRMSE calculated on a monthly basis through the one-year verification
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 54 Boxplots for the distribution of ISRMSE values over a Monte-Carlo experiment
with 100 replicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

8



D4.1 Distributed and Collaborative Forecasting
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GPD generalized Pareto distribution.
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I. Introduction

In renewable energy sources (RES) forecasting, past results showed that geographically dis-
tributed weather and RES power time series can improve wind (Tastu et al., 2010) and solar
power forecasting (Bessa et al., 2015b) skill in hours-ahead forecasting, and features extracted
from a grid of NWP (Andrade and Bessa, 2017) or turbine-level data improve days-ahead fore-
casting (Gilbert et al., 2020a). Most of the works that have shown the interest of using spatially
distributed data have assumed that data could be gathered centrally and used, either at the
wind farm level, or at the level of a system operator. This is not in line with current practice, where
data is distributed in terms of ownership, limitation is data transfer capabilities, and with agents
being reluctant to share their data anyway. This motivates the construction of new business mod-
els for RES forecasting driven to exploit data from different owners and create economic signals
for data sharing and collaborative analytics. Hence, the following requirements need to be ad-
dressed: (1) data privacy and confidentiality when combining data from different owners; (2)
robust data exchange schemes (centralized, peer-to-peer, asynchronous, etc.) for collabora-
tive analytics; (3) algorithmic solutions for data markets in RES forecasting (covered in Deliverable
D4.2 of Smart4RES project).

In this context, this deliverable details the work developed by INESC TEC and DTU for Task 4.1
(“Distributed and collaborative forecasting”) of Smart4RES Task 4.1, producing the following main
outcomes:

1. Conditional extreme quantile (i.e., distribution’s tails) forecasting model, that combines
extreme value theory estimators for truncated generalized generalized Pareto distribution
with non-parametric methods, conditioned by spatio-temporal information. [Section II]

2. Numerical and mathematical analysis of the existing privacy-preserving regression models
for time series forecasting and identification of weaknesses in the current literature. [Sec-
tion III]

3. Privacy-preserving forecasting algorithm (or vertical federated learning according to the
federated learning nomenclature, Chen et al. (2020)) for vector autoregressive forecasting
models (i.e., multivariate time series forecasting), that protects data by combining linear al-
gebra transformations with a decomposition-based algorithm. This method was extended
to capture nonlinear relations (e.g., between wind speed and wind power) through splines
(additive model framework). [Section IV]

4. Two novel approaches that recursively update model parameters while limiting information
exchange between wind farm operators and other potential data providers – tackles the
gap between online and distributed optimisation. [Section V]

5. An online forecast reconciliation approach in a constrained regression framework, which
relies on a multivariate least squares estimator, with equality constraints on the coefficients.
A recursive and adaptive version of that estimator is derived, hence allowing to track the
optimal reconciliation in a fully data-driven manner. [Section VI]

The novel RES forecasting models were evaluated using synthetic data (when justified to check
the validity of the mathematical modeling) and real publicly available datasets (from wind and
solar energy power plants).
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II. Extreme conditional quantile forecasting

II.1 Introduction

The growing integration of renewable energy sources (RES) brings new challenges to system
operators and market players and robust forecasting models are fundamental for handling their
variability and uncertainty. This fomented a growing interest in RES probabilistic forecasting tech-
niques and its integration in decision-aid under risk (Bessa et al., 2017).

Many satisfying methods already exist to forecast RES generation quantiles with nominal pro-
portion between 0.05 and 0.95, which can be parametric or non-parametric. An up-to-date
literature review about RES probabilistic forecasting can be found in (Sweeney et al., 2020b).
Parametric models assume that data are generated from a known probability distribution (e.g.
Gaussian, Beta), whose parameters are estimated from the data. Non-parametric models do
not make any assumptions about the shape of the probability distribution and comprise tech-
niques such as quantile regression (QR) with radial basis functions (Juban et al., 2016), local
QR (Bremnes, 2004), conditional kernel density estimation (Bessa et al., 2012b) and gradient
boosting trees (GBT) (Andrade and Bessa, 2017). It is also possible to find semi-parametric ap-
proaches, e.g., mixture of a censored distribution and probability masses on the upper and lower
boundaries that transform wind power data into a Gaussian distribution, whose mean and stan-
dard deviation are forecasted with a statistical model (Pinson, 2012b); combination of linear
regression, inverse (power-to-wind) transformation and censored normal distribution (Messner
et al., 2013).

The main advantage of parametric methods is that the distribution’s shape only depends on a
few parameters, resulting in a simplified estimation and consequently requiring low computa-
tional costs. However, the choice of the parametric function is not straightforward. On the other
hand, non-parametric models require a large number of observations to achieve good perfor-
mance. Therefore, when estimating quantiles with nominal proportion below 0.05 and above
0.95, non-parametric models tend to have poor performance due to data sparsity. This suggests
the combination of both approaches to forecast the conditional probability function: interme-
diate quantiles are estimated with a non-parametric model and the extreme quantiles (or tails)
with a parametric approach.

A poor forecast of extreme quantiles can have a high impact in different decision-aid problems,
in particular when decision-makers are highly risk averse or the regulatory framework imposes
high security levels. For instance, when setting operating reserve requirements system operators
usually define risk (e.g., loss of load probability) levels below 1% (Matos and Bessa, 2010); the
distribution’s tails forecasting accuracy affects the decision quality of advanced RES bidding
strategies that are based on risk metrics such as conditional value-at-risk (Botterud et al., 2012);
dynamic line rating uncertainty forecasting for transmission grids also requires the use of low
quantiles (e.g., 1%) (Dupin, 2018). Moreover, the generation of temporal and/or spatial-temporal
trajectories (or random vectors) with a statistical method, such as the Gaussian copula (Pinson
et al., 2009), requires a full modelling of the distribution function and an accurate estimation of
the tails avoids trajectories with “extreme” values. In all these use cases, it is important to under-
line that poor modelling of distribution’ tails might lead to over and under-estimation of risk and
consequently to worst decisions. This impact can be measured by metrics such as the Value
of the Right Distribution that measures the difference in the cost of optimal solution, in stochas-
tic programming, obtained with the forecasted and realized probability distribution (Cagnolari,
2017).

By exploring concepts from extreme value theory (EVT), which is dedicated to characterise the
stochastic behaviour of extreme values De Haan and Ferreira (2007), the present section pro-
poses a novel wind power forecasting methodology, focused in improving the forecasting skill
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Figure 1 The proposed method uses different estimators for intermediate and extreme quantiles.

of the distribution’s tails, which combines spatio-temporal information (obtained trough feature
engineering), gradient boosting trees (GBT) as a non-parametric method for quantiles between
0.05 and 0.95 and the truncated generalized Pareto distribution (GPD) for the tails.

The remaining of this section is organized as follows. Subsection II.2 presents related work and
identify contributions. Subsection II.3 introduces the relevant statistical background of non-
parametric and parametric methods. Subsection II.4 describes a novel forecasting method
combining GBT with truncated GPD. Subsection II.5 describes the experiments to evaluate the
proposed method and conclusions are drawn in Subsection II.6.

II.2 Related Work and Contributions

Andersen (2009) and Matos et al. (2016) used a QR model to forecast the wind power quantiles
from 0.05 to 0.95 and the distribution’ tails are modeled using an exponential function. The
exponential function requires the estimation of a single parameter that controls the tails’ decay,
the thickness parameter ρ. This parameter can be estimated by computing the mean of the
observed power conditioned by the forecasted wind power, i.e., observed power is divided
into equally populated bins according to forecasted wind power, then ρ is the average power
associated to each bin. This procedure is not as flexible as those provided by an EVT estimator like
GPD (used in this work), which models extreme events through distributions with two parameters
(scale and shape), allowing it to estimate lightweight and heavier tails.

A two-stage EVT approach is proposed by Beirlant et al. (2004) to estimate the extreme quan-
tiles of a random variable Y conditioned by covariate X. First, the conditional quantiles are esti-
mated with a local QR. Then, generalized extreme value distribution with a single parameter (i.e.,
extreme value index estimated using maximum likelihood) is applied to these non-parametrically
estimated quantiles in order to construct an estimator for extreme quantiles. Similarly, Wang
et al. (2012) apply linear QR to estimate the intermediate conditional quantiles, which are then
extrapolated to the upper tails by applying EVT estimators (e.g., Hill estimator) for heavy-tailed
distributions (GPD is assumed). However, the conditional quantiles of Y are assumed to have
a linear relation with X at the tails, which may be too restrictive in real-world applications. In
order to overcome this limitation, the approach proposed in (Wang and Li, 2013) works by first
finding an appropriate power transformation of Y , then estimating the intermediate conditional
quantiles of transformed Y using linear QR and finally extrapolating these estimates to extreme
tails with EVT estimators. At the end, these quantiles are transformed back to the original scale.

More importantly, existing works only apply EVT as a post-processing step over a set of quantiles
first estimated (or forecasted) by a non-parametric method (Wang et al., 2012). However, since
non-parametric models can suffer from high variability at the tails, the performance of EVT es-
timators may be compromised. In order to overcome this problem, we restrict non-parametric
estimation to the intermediate quantiles, as depicted in Figure 1. This estimation is then used to
guide the parametric model by rating historically similar periods conditioned by the covariates.
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Finally, two works proposed the use of spatio-temporal data in RES probabilistic forecasting: com-
bination of GBT with feature engineering techniques to extract information from a grid of Numer-
ical Weather Predictions (NWP) (Andrade and Bessa, 2017); hierarchical forecasting models to
leverage turbine-level data (Gilbert et al., 2020b). Both works do not deal or propose a specific
methodology to forecast conditional distribution’s tails.

II.3 Background: Non-parametric and Parametric Methods

This section presents the main statistical methods to construct the proposed method and base-
line approaches. In what follows, xi is the observed p-dimensional vector of covariates and yi is
the target variable, with i ∈ {1, . . . , n}.

II.3.1 Non-parametric Methods

II.3.1.1 Quantile Regression The QR model (Koenker and Bassett Jr, 1978) estimates the con-
ditional quantile function of Y given X,

QQR(τ |X) = β0(τ) + β1(τ)X1 + · · ·+ βp(τ)Xp, (1)

for the nominal proportion τ ∈ [0, 1], by minimizing

β̂(τ) = argmin
β

n∑
i=1

ρτ

yi − β0(τ)−
p∑

j=1

βj(τ)xij

 , (2)

where β̂(τ) = (β̂0(τ), . . . , β̂p(τ)) are unknown coefficients depending on τ , and ρτ (u) is the pinball
loss function (Koenker and Bassett Jr, 1978).

II.3.1.2 Gradient Boosting Trees A GBT model for quantile forecasting is constructed by com-
bining base learners (i.e., regression trees), fj , recurrently on modified data,

QGBT
j (τ |X) = QGBT

j−1(τ |X) + ηfj(τ |X). (3)

with each regression tree fj fitted using the negative gradients as target variable, and as part of
an additive training process to minimize the pinball loss function

f̂j(τ |X) = argmin
fj

n∑
i=1

ρτ

(
yi, Q̂

GBT
j−1(τ |xi) + ηfj(τ |xi)

)
. (4)

The initial model QGBT
1 is typically the unconditional τ -quantile of y. The challenge of GBT is to

tune the different hyperparameters, which are related with the regression trees and the boosting
process — see (Andrade and Bessa, 2017) for more details.

II.3.1.3 Rearrangement of quantiles Since both QR and GBT solve an optimization problem
for each quantile τ independently, quantile crossing may happen, i.e., Q(τ1|x) < Q(τ2|x) for
τ1 > τ2. Post-processing is applied to the model’s output to ensure that the estimated cumulative
function is monotonically non-decreasing. We can monotonize the function by considering the
proportion of times the quantile Q(τ |x) is bellow a certain y, mathematically provided by the
cumulative distribution function (CDF)

F (y|x) =
∫ 1

0

1Q(τ |x)≤ydτ (5)
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Figure 2 Illustration of γ value in function of k. The first stable part of the plot happens for k ≈ 700.

which is monotone at the level y, and then use its quantile function

Q̃(τ |x) = F−1(τ |x) (6)

which is monotone in τ (Chernozhukov et al., 2010).

II.3.2 Parametric Methods for Extreme Quantiles

II.3.2.1 Exponential function In (Andersen, 2009), distribution’ tails of wind power are approxi-
mated by exponential functions. Given the estimated conditional quantiles for nominal propor-
tion between 0.05 and 0.95, the extreme quantiles are computed as

Q̂exp(τ |x)=


Q̂(0.05|x) ln(

0.05
ρ )

ln( τ
ρ ) , τ<0.05,

C

(
1−
(
1− Q̂(0.95|x)

C

)
ln( 1−0.95

ρ )

ln( 1−τ
ρ )

)
, τ>0.95,

(7)

where ρ corresponds to the thickness parameter for the exponential extrapolation and C is the
installed capacity. Since the lower and upper tails may have different behaviors, ρ is indepen-
dently estimated for each tail by maximum likelihood (Matos et al., 2016).

II.3.2.2 Hill-based methods In (Wang et al., 2012) and (Wang and Li, 2013), a QR model is
combined with EVT estimators. First, a local QR model is used to estimate the conditional quan-
tiles τj = j/(n + 1), denoted as Q̂QR(τj |x), j ∈ {1, ..., n − [nη]}, for some 0 < η < 1, being [u] the
integer part of u, and n the number of observations. Then, using these values, extreme quantiles
are computed through an adaptation of Weissman’s estimator,

Q̂W(τ |x) =
(
1− τn−k

1− τn

)γ̂(x)

Q̂QR(τn−k|x), (8)

where γ̂(x) is based on Hill’s estimator

γ̂(x) =
1

k − [nη]

k∑
j=[nη ]

log
Q̂QR(τn−j |x)
Q̂QR(τn−k|x)

. (9)

In EVT, the selection of k is an important and challenging problem. The value k represents the
effective sample size for tail extrapolation. A smaller k leads to estimators with larger variance,
while larger k results in more bias, when estimating γ(x). In practice, a commonly used heuris-
tic approach for choosing k is to plot the estimated γ versus k and then choose a suitable k
corresponding to the first stable part of the plot (De Haan and Ferreira, 2007), see Figure 2.

In (Wang and Li, 2013), the response variable of the QR model is the power transformation Λλ(.)
of Y that aims to improve the linear relation with x. That is,

Λλ(y) =

{
yλ−1

λ , if λ ̸= 0,

log(y), if λ = 0.
(10)
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For this approach, k is estimated to minimize

argmin
k≥1

n∑
i=1

λ̂γ̂(xi)− γ̂∗(xi), (11)

where

γ̂∗(x) = M
(1)
0,n + 1− 1

2

(
1−

(M
(1)
0,n)

2

M
(2)
0,n

)−1

(12)

M
(i)
0,n =

1

k − [nη]

k∑
j=[nη ]

(
log

Q̂QR(τn−j)

Q̂QR(τn−k)

)i

. (13)

II.3.2.3 Peaks-over-threshold (POT) method with truncation Since wind power generation is lim-
ited between 0 and installed capacity C, we observe the truncated random variable Y , Y <= C.
(Beirlant et al., 2017) provide an estimator for the extreme quantiles by using a random sample
of Y , with independent and identically distributed observations, i.e., does not consider that Y
is conditioned by covariates x. The POT method (McNeil and Saladin, 1997) is adapted to esti-
mate extreme quantiles from a GPD distribution affected by truncation at point C. The quantiles
for Y are estimated by

Q̂tGPD
k (1− p) = Yn−k,n +

σ̂k

ξ̂k


D̂C,k + (k+1)

(n+1)

p(D̂C,k + 1)

ξ̂k

− 1

 , (14)

where Y1,n < · · · < Yn,n is the ordered sample, ξ̂k and σ̂k are the maximum likelihood estimates
adapted for truncation, and D̂C the truncation odds estimator

D̂C,k = max

{
0,

k

n

(1 + (ξ̂k/σ̂k)E1,k)
−1/ξ̂k − 1

k

1− (1 + (ξ̂k/σ̂k)E1,k)−1/ξ̂k

}
, (15)

with Ej,k = Yn−j+1,n − Yn−k,n.

The GDP estimator will be used in our proposed method because (i) the shape parameter ξ
allows modeling everything from extreme events with lightweight distribution (ξ<0) to events
with exponential distribution (ξ=0) and events with heavy distribution (ξ>0); (ii) the existence of
estimators for truncated GPD that can handle random variables with limited support like wind
power.

II.3.3 Evaluation Metrics

This subsection describes the set of metrics adopted to evaluate probabilistic forecasting skill of
extreme quantiles.

II.3.3.1 Calibration Measures the mismatch between the empirical probabilities (or long-run
quantile proportions) and nominal (or subjective) probabilities, e.g. a .25 quantile should con-
tain 25% of the observed values lower or equal to its value. For each quantile τ , the observed
proportion α̂(τ) of observations bellow the estimated quantile is

α̂(τ) =
1

n

n∑
i=1

1yi≤Q̂y(τ |xi)
. (16)
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II.3.3.2 Sharpness Measures the “degree of uncertainty” of the probabilistic forecast, which
numerically corresponds to compute the average interval size between two symmetric quan-
tiles, e.g., 0.10 and 0.90 centered in the 0.50 quantile (median), as follows

sharpY (τ) =
1

n

n∑
i=1

Q̂Y (1− τ |xi)− Q̂Y (τ |xi), (17)

for τ ∈ [0, 0.5].

II.3.3.3 Continuous Ranked Probability Score (CRPS) Evaluates the forecasting skill of a prob-
abilistic forecast in terms of the entire predictive CDF, using an omnibus scoring function that
simultaneously addresses calibration and sharpness (Friederichs and Thorarinsdottir, 2012). Let y
be the observation, and FY the CDF associated with an empirical probabilistic forecast,

CRPS(FY , y) =

∫ ∞

−∞

(
FY (z)−H(z − y)

)2
dz, (18)

where H is the Heaviside function.

Although CRPS is very popular in evaluating the quality of CDF forecast, recent work in (Taillardat
et al., 2019) concluded that the mean of the CRPS is unable to discriminate forecasts with differ-
ent tails behavior since it tends to benefit distributions with smaller uncertainty intervals, even if
the calibration is poor. A more suitable scoring rule, following the suggestion in (Friederichs and
Thorarinsdottir, 2012), is the pinball function or quantile loss. Smaller the value of the quantile
score, better the model when forecasting quantile τ .

II.3.3.4 Pinball loss function or quantile score Assess the accuracy of each quantile forecast
Q̂Y (τ |xi) by weighting the differences, between Q̂Y (τ |xi) and yi, according to its sign and τ
value (Koenker and Bassett Jr, 1978),

ρτ (yi, Q̂Y (τ |xi)) =

τ
[
yi − Q̂Y (τ |xi)

]
, if yi > Q̂Y (τ |xi),

(τ − 1)
[
yi − Q̂Y (τ |xi)

]
, otherwise.

(19)

Smaller the value of the quantile score, the better the model when forecasting quantile τ .

II.4 Gradient Boosting Trees with a Truncated Generalized
Pareto Model

As previously discussed in Section II.2, EVT estimators are, at present, used in post-processing steps
for quantiles forecasted with a non-parametric model, i.e., the non-parametric model forecasts
all quantiles (including extreme quantiles) and EVT estimators are applied to correct the fore-
casted distribution’s tails. However, since non-parametric approaches do not properly estimate
extreme quantiles due to data sparsity, the performance of EVT estimators may be compro-
mised. In this section and to overcome this gap, we propose to apply EVT estimator to histori-
cal data directly. The selection of the relevant historical data is guided by the non-parametric
model.

Our proposal consists of the following steps, also depicted in Figure 3:

Step 1 Non-parametric estimation: A non-parametric model Q(τ |x) is estimated for interme-
diate quantiles, e.g., τ ∈ τ = {0.05, 0.10, . . . , 0.95}, i.e., 19 models are estimated using
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Figure 3 Overview of the proposed forecasting model.

available historical data {(xtr
i , y

tr
i )}Ti=1. A rearrangement is also performed as described

in (6). For a given training observation i, (xtr
i , y

tr
i ), there is an estimation q̂tr

i (τ) = Q(τ |xtr
i ).

Step 2 Non-parametric forecast: Given a new observation x∗, the estimation q̂∗(τ) is given by
the aforementioned non-parametric model Q(τ |x) for τ ∈ τ .

Step 3 Historical similarity: A similarity score s (q1,q2) is computed between two quantile curves
along several values of τ . The quantile curve q̂∗ from the new sample q̂∗ = [q̂∗(τ) | τ ∈ τ ]
is compared with the quantile curve of each historical observation i, q̂tr

i =
[
q̂tr
i (τ) | τ ∈ τ

]
.

This similarity function is the Kolmogorov-Smirnov statistic given by

s(q1,q2) = sup
τ

|q̂1(τ)− q̂2(τ)| . (20)

The new observation is scored against each historical observation, si = s(q̂∗, q̂tr
i ). Since

both quantile curves q̂∗ and q̂tr
i are conditioned by the covariates, the selection of the

similar periods through si is also conditioned by the covariates.

Step 4 EVT data sample: The EVT estimator for the truncated GPD (14) is applied twice, for the
lower-tail (τ < 0.05) and the upper-tail (τ > 0.95) quantiles. The historical values of yi,
used as the fitting sample of the EVT estimator, are selected as those corresponding to
the top-ν (hyperparameter) values of si = s(q̂∗, q̂tr

i ). To avoid quantile crossing, these
values are further narrowed down to yi ≤ q̂∗(0.05) and yi ≥ q̂∗(0.95), respectively.
Furthermore, EVT requires that the sample encompasses the entire quantile curve, there-
fore the remaining 90% quantiles, which correspond to 0.9ν

0.05 observations, are sampled
from a spline interpolation constructed from the discrete q̂∗ curve. The ensuing sample
is called y′.

Step 5 EVT estimation: Lower-tail and upper-tail quantiles are estimated through the estimator
for the truncated GPD (14), considering the sample y′. Since, by convention, EVT distri-
butions are defined for quantiles close to 1, the estimation of the lower-tail is obtained by
considering the sample y′′i = C−y′i. EVT estimation is performed by (14) so that forecasted
values are non-negative and below the installed capacity, 0 ≤ ŷ ≤ C.

Note that step Step 3 chooses i by comparing the probability distribution q̂ of the target variable
conditioned on x∗ and xtr

i . This is different from the usual approach of choosing i by comparing
x∗ against xtr

i directly, as in Beirlant et al. (2004), which assumes that covariates have equal
weight and does not take the target variable into consideration. For instance, covariate j may
be uncorrelated to the target, i.e., corr((xtr)j , y

tr) = 0, yet it contributes to the similarity through
the Euclidean distance as ((xtr

i )j − (x∗)j)
2. Our modification avoids that problem.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337
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Table 1 Evaluated forecasting models.

Notation Description

GBT Gradient Boosting Trees (non-parametric model)

local tGPD Hill estimator and truncated GPD in (14)*

Exp Tails Exponential functions in (7), using GBT

QR EVT QR combined with Hill estimator in (8)**, as in Wang et al. (2012)

QR EVT T QR, Hill estimator and transformed power data as in (10)**, as in Wang and Li (2013)

GBT EVT GBT combined with Hill estimator (8)**

GBT tGPD Proposed method combining GBT with truncated GPD

* applied to b% of training samples ranked by similarity (Euclidean distance) between covariates

** EVT estimator used in post-processing stage

II.5 Case Studies

To evaluate the added-value of the proposed method, the models described in Table 1 are
compared using three different datasets. The implementation is performed through R and
Python programming languages. The local tGPD benchmark is a naive model: the estimator
for the truncated GPD (14) is applied to a b% of training samples listed in ascending order ac-
cording to the Euclidean distance between xtr

i and x∗. The hyperparameter ν was determined
by cross-validation (12 folds) in the training set, testing all values from 5% to 50%, with increments
of 5%. This model is used to assess if the mapping between covariates (e.g., weather forecasts)
and the target variable is important (as discussed in the last paragraph of the previous sec-
tion). The hyperparameters of the GBT models were estimated using the Bayesian optimization
algorithm from the Python implementation in Nogueira (2020). A 12-fold cross-validation was
employed and, since all real-world training sets contemplate one year of data, 12-folds guaran-
tees 12 different monthly validation scenarios. For the final evaluation, the average of monthly
CRPS (18) is considered for each training set in the optimization process.

Also, the EVT estimators, in (8) and (14), require the selection of the number of ordered samples
(k) for each time step. We followed the heuristic approach for choosing the first stable part of
the plot of γ versus k, as illustrated in Figure 2. The stable part is found by computing a moving
average on the differences of γ. In our approach, hyperparameter h was selected by cross-
validation in the training set (12 folds), testing all values from 50 to 500 with increments of 50.

Three datasets are now described, and results are analyzed. The first experiment consists of
using synthetic data that captures the three types of tails (lightweight, exponential, and heavy),
while the second and third experiments consist of real data from wind and solar production
units, respectively. For synthetic data, the results are evaluated in terms of deviations between
predicted and real quantiles, but for real data the real quantiles are unknown, motivating the
use of literature metrics such as calibration (16), sharpness (17) and quantile score function (19).

This project has received funding from the European Union’s Horizon 2020 research
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Figure 4 CDF for (x∗
1, x

∗
2) ∈ {(0,−1), (0, 0), (0, 1)}.

II.5.1 Synthetic Data

II.5.1.1 Data Description The proposed approach is firstly studied through simulation. The dis-
tribution from which we simulated Y is the truncated GPD for which the CDF is given by

F tGPD
(C,µ,σ,ξ)(y) =

F(µ,σ,ξ)(y)− F(µ,σ,ξ)(C)

1− F(µ,σ,ξ)(C)
(21)

with

F(µ,σ,ξ)(y) =

1−
(
1 + ξ(y−µ)

σ

)−1/ξ

for ξ ̸= 0,

1− exp
(
−y−µ

σ

)
for ξ = 0,

(22)

where the support of non-truncated Y is y ≥ µ when ξ ≥ 0 and µ ≤ y ≤ µ− σ/ξ when ξ < 0, and
C is the truncation value.

In this study, we take C = 10, µ = 0, σ = 1 and ξ(X1, X2) = (X1 +X2) exp(X1 +X2), where X1, X2

are covariates, i.e., the distribution of Y is conditioned by X1, X2. We generate 500 datasets of
size 4000, and the values for covariates X1, X2 are drawn from the U [−2, 2]. Then, the estimation
problem at (x∗

1, x
∗
2) ∈ {(0,−1), (0, 0), (0, 1)} is considered to illustrate the proposed approach. The

corresponding CDF is depicted in Figure 4, for which ξ < 0, ξ = 0 and ξ > 0, respectively.

II.5.1.2 Results and Discussion The proposed approach requires choosing two things: (i) the
non-parametric model to estimate the quantiles for the central nominal proportions, and (ii) the
nominal proportions to apply the selected non-parametric model, i.e., “should we consider τ ∈
{0.05, . . . , 0.95} or τ ∈ {0.01, . . . , 0.99}?” The evaluation of GBT and QR is performed through 400
observations, the remaining 3600 are used to optimize the aforementioned hyperparameters
by 12-fold cross-validation. Since the real quantiles values are known, the deviation between
estimated and real values for the 500 datasets is depicted in Figure 5, considering τ = {0.05,
0.35, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.96, 0.99}. For nominal proportions below 0.5 the deviations are
similar, but for superior levels GBT has smaller deviations, motivating the selection of GBT. In fact,
the QR approach tends to result in heavier tails. In addition, due to model degradation when τ =
{0.96, 0.99}, the benchmark models Exp Tails, QR EVT, QR EVT T, GBT EVT and GBT tGPD consider
the non-parametric approach for τ ∈ {0.05, . . . , 0.95}.

Next, the quantiles with nominal proportion τe = {0.96, 0.97, 0.98, 0.99, 0.995, 0.999} are estimated
for (x∗

1, x
∗
2) ∈ {(0,−1), (0, 0), (0, 1)}. Figure 6 summarizes the difference between the normalized

absolute deviations,

|Q̂benchmark(τ |x)−QtGPD(τ |x)| − |Q̂GBT tGPD(τ |x)−QtGPD(τ |x)|
QtGPD(τ |x)

× 100, (23)

This project has received funding from the European Union’s Horizon 2020 research
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Figure 5 Comparison between GBT and QR (× represents the mean values).
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Figure 6 Improvement in terms of normalized absolute deviations, considering (x∗
1, x

∗
2) ∈ {(0,−1), (0, 0),

(0, 1)} (× represents the mean values).

τ ∈ τe. Positive values indicate the deviations obtained by our proposal are smaller. Accord-
ing to this analysis, for τ ∈ {0.96, 0.97, 0.98} in almost 75% of the observations our proposal has
smaller deviations when compared to QR-based approaches, Exp Tails, and local tGPD. But,
when compared to GBT, GBTEVT, and Exp Tails, this superiority is not observed, and similar devia-
tions are achieved. However, for the most extreme quantiles, τ ∈ {0.99, 0.995, 0.999}, our proposal
has been more effective than all benchmarks.

To complement this analysis, Table 2 splits the results by (x∗
1, x

∗
2) for τ ∈ {0.99, 0.995, 0.999}. The

mean of Q̂(τ |x) over the 500 datasets is presented and the DM test (Diebold and Mariano, 2002)
is used to test the hypothesis of equal deviations. When ξ < 0 the quantiles estimated by our
proposal are closer to the real values. Regarding the exponential tails, (x∗

1, x
∗
2) = (0, 0), Exp Tails,

and GBT-based methods performed similarly to our proposal. Lastly, since QR-based approaches
tend to result in heavier tails, their performance is favored for the point (x∗

1, x
∗
2) = (0, 1) for which

the quantile 0.9 is 9.34 (almost the limit C = 10). QR-based approaches result in larger forecasting
intervals [Q̂(1− τ), Q̂(τ)] for all considered (x∗

1, x
∗
2).

Since QR-based approaches has poor performances when ξ ∈ {−1, 0}, we conclude that the
proposed approach models better the overall tails’ behaviors.

II.5.2 Wind Power Data

II.5.2.1 Data Description The proposed method is also tested with a wind power dataset from
the Sotavento wind power plant, located in Galicia (Spain), as depicted in Figure 7, with a total
installed capacity of 17.56 MW. The dataset extends from January 1st, 2014 to September 22nd,
2016, with hourly time steps.

The NWP data was retrieved from the MeteoGalicia THREDDS server, which is a publicly available
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Table 2 Mean quantile forecasts for τ ∈ {0.99, 0.995, 0.999}.

x = (0,−1), ξ < 0 x = (0,0), ξ = 0 x = (1,0), ξ > 0

τ 0.99 0.995 0.999 0.99 0.995 0.999 0.99 0.995 0.999

QtGPD(τ) 2.22 2.33 2.50 4.60 5.29 6.86 9.35 9.67 9.93

GBT 3.85 5.37 8.3 5.17 6.34 8.78 6.97 7.54 8.95

local tGPD 5.48 6.75 8.98 7.91 8.89 9.78 8.90 9.46 9.60

Exp Tails 3.32 3.73 4.49 5.39 5.85 6.61 8.31 8.61 9.00

QR EVT 6.04 7.89 10.00 7.54 9.57 10.00 9.01 9.97 10.00

QR EVT T 4.85 6.10 9.05 6.43 7.97 9.83 8.32 9.44 9.99

GBT EVT 3.37 3.96 5.8 5.09 5.37 ✓ 7.34 6.87 7.28 8.32

GBT tGPD 2.89 ✓ 3.13 ✓ 3.57 ✓ 5.13 5.68 6.59 8.26 8.90 9.68

✓ statistically significant improvement against all others (DM test)

service that provides historical and daily forecasts of several weather variables. The NWP is run at
0h UTC and the time horizon is 96 hours-ahead, meaning that for each day a set of four forecasts
are available for each point of the grid (one generated in the current day at 0h UTC plus three
generated on the previous days).

The NWP model provides forecasts for: (a) u (m/s), azimuthal wind speed; (b) v (m/s), meridional
wind speed; (c) mod (m/s), wind speed module; (d) dir [0, 360], wind direction. Four model levels
(0 to 3) are available, meaning a total of 16 variables in each grid point.

Covariates extracted from the NWP grid. The features created by the authors of Andrade and
Bessa (2017), from a NWP grid with 13 × 13 equally distributed points (Figure 7), were used in this
work and are described below. Our goal is to forecast the wind power for 24h-ahead and the
majority of the covariates are constructed with the most recent NWP run.

Temporal information is represented by:

• Temporal variance for the mod variable (level 3) at the central point of the grid, computed
as

σtime(t+ h) =

√∑7
i=−7(modt+h+i −mod)2

14
. (24)

• Lags and leads, xt+h±z, for mod and dir (level 3) at the central point of the grid, z = 1, 2, 3.

• Four predictions generated for mod (level 3) at the central point of the grid.

The spatial information is represented through:

• PCA applied to mod and dir (levels 1, 2, 3), and to u and v (level 3) with a 95% variance
threshold.

• Spatial standard deviation for mod, u and v at level 3, computed as

σspatial(t+ h) =

√∑Np

i=1 (xi,t+h − xt+h)
2

Np − 1
, (25)
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Figure 7 Geographical representation of data collection points for real datasets.

Table 3 Time period for training and testing folds (wind power dataset).

Fold Train set range Test set range

1 01/01/2014–31/12/2014 01/01/2015–31/05/2015

2 01/06/2014–31/05/2015 01/06/2015–31/10/2015

3 01/11/2015–30/10/2016 01/11/2015–31/03/2016

4 01/04/2015–31/03/2016 01/04/2016–22/09/2016

where Np is the number of geographical points in the NWP grid, xi,t+h is the value of vari-
able x at time t+ h and location i, and xt+h is the mean of x for all locations.

• Spatial mean computed with the grid values of mod, u and v at model levels 1, 2, 3.

Data division. A sliding-window approach was used for training the models. Table 3 presents the
four distinct test folds. Each train and test set consists of 12 and 5 months, respectively, allowing
an evaluation under different conditions.

II.5.2.2 Results and Discussion Since the GBT model performs better for power data, due to the
nonlinear relationship between wind and power, GBT is used to estimate quantiles between 0.05
and 0.95 Andrade and Bessa (2017). The proposed model is then used to estimate the quantiles
τe = {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999}.

Table 4 summarizes the relative quantile score improvement obtained by GBT tGPD over the
baseline models. Quantile score is computed by considering the extreme quantiles for nominal
proportions τe. The GBT tGPD improvement is greater than 3.5% for all testing folds, except over
GBT.

The statistics of the wind power generation for the train and test periods are summarized in
Figure 8. Two factors might justify the different improvements obtained in the four folds: the
variability of the wind power values and the differences between train and test data distributions.
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Table 4 Relative quantile loss improvement (%) over the baseline models (wind power dataset), considering
the extreme quantiles τe.

Folds Fold 1 Fold 2 Fold 3 Fold 4 W.Avg.

GBT 5.40 1.97 7.03 0.12 3.76

local tGPD 22.27 29.34 21.71 27.80 26.25

Exp Tails 12.87 11.03 9.44 14.79 12.55

QR EVT 10.16 7.10 4.56 8.90 8.21

QR EVT T 12.39 7.20 10.78 8.55 10.39

GBTEVT 12.20 9.06 9.33 5.03 9.75

Table 5 Quantile loss for each model (lower is better), with regard to the wind power dataset.

τ 0.001 0.005 0.01 0.99 0.995 0.999

GBT 3.20 15.49 29.60 52.65 30.98 10.60

local tGPD 3.16 15.74 31.05 84.52 45.21 9.69

Exp Tails 8.63 20.95 32.47 53.14 32.26 9.43

QR EVT 3.14 15.64 29.67 54.90 32.17 8.89

QR EVT T 3.19 15.55 29.84 59.27 34.48 9.68

GBT EVT 3.17 15.72 31.97 67.13 35.23 8.45

GBT tGPD† 3.13 15.28 29.30 50.35 ✓ 28.23 ✓ 8.01 ✓

† the proposed method

✓ statistically significant improvement against all others (DM test)

When high variability is associated with different distributions for train and test sets, as is the case
of fold 3, the selection of 200 observations results on more dispersed power measurements and,
consequently, the EVT estimator has longer tails.

Table 5 shows a finer-grained view of the quantile loss for the most extreme quantiles, averaged
over the testing folds. It can be noticed that the improvement of the proposed method is slightly
higher for the upper quantiles, but, all in all, the proposed method shows the best results.

Figure 9 complements the previous analysis by showing the calibration values for each model.
For the upper tail, the GBT tGPD model exhibits almost perfect calibration for all quantiles. In
the lower tail, it produces a lower overestimation of the quantiles. However, when considering
all quantiles, QR-based models are the most well-calibrated models. Yet, when analyzing the
sharpness of the forecast intervals generated by these methods in Figure 10, these methods
show that the better calibration comes at the cost of a higher amplitude (i.e., lower sharpness),
which is a trade-off well-known in the forecasting literature. The lower sharpness from GBTEVT,
QR EVT T and QR EVT is justified by the fact that the Hill estimator is more suitable for heavy-tailed
distributions.

For illustrative purposes, the most extreme forecasted quantiles (i.e., 0.001 and 0.999) obtained
with GBT, Exp Tails and GBT tGPD are depicted in Figure 11. The Exp Tails model was chosen
since it is the model with the lowest sharpness. This plot clearly shows that GBT tGPD has a better
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Figure 8 Boxplot for the wind power considering the division on Table 3.
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Figure 9 Deviation between nominal and empirical quantiles for wind power data, considering all folds.
Dashed black line represents perfect calibration.
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Figure 10 Sharpness results for wind power data, considering all folds.
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Figure 11 Illustrative forecast of extreme quantiles for GBT, Exp Tails and GBT tGPD, considering wind power
data.
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calibration than Exp Tails, but wider intervals, and also shows a higher temporal variability of the
forecast generated by GBT tGPD.

The baseline model GBT shows small sharpness for all nominal coverage rates (between 92%
and 99%) except the most extreme one (99.8%), as depicted in Figure 10. The small sharpness is
explained by the fact that GBT fails to capture the variability for the most extreme quantiles. The
forecast of the lower quantiles is particularly bad with values very close to zero, as depicted in
Figure 11.

II.5.3 Solar Power Data

II.5.3.1 Data Description The solar power dataset consists of hourly power measurements from
a 16320 W peak photovoltaic power plant located in Porto city, Portugal, as illustrated in Figure 7.
The dataset extends from March 28th, 2013 to June 28th, 2016, with hourly time steps.

As in the previous case study, the NWP data was retrieved from the MeteoGalicia THREDDS
server, and the NWP model provides forecasts for: (a) swflx (W/m2), surface downwelling short-
wave flux; (b) temp (K), ambient temperature at 2 meters; (c) cfl [0, 1], cloud cover at low levels;
(d) cfm [0, 1], cloud cover at mid levels; (e) cfh [0, 1], cloud cover at high levels; (f) cft [0, 1], cloud
cover at low and mid levels.

Covariates extracted from the NWP grid. The features created by the authors of Andrade and
Bessa (2017), from a NWP grid with 13 × 13 equally distributed points (Figure 7), were used in this
work and are described below. Our goal is to forecast solar power for 24h-ahead. Since night
hours have zero power production, these hours are removed.

Temporal information is represented by:

• Temporal variance for the swflx variable at the central point of the grid, as in (24).

• Lags and leads, xt+h±z, for mod and dir at the central point of the grid, z = 1, 2, 3.

• Four predictions generated for mod at the central point of the grid.

The spatial information is represented through:

• PCA applied to swflx, cfl, cfm and cft with a 90% variance threshold.

• Spatial standard deviation for swflx computed as in (25).

• Spatial mean computed with the grid values of swflx.

Moreover, calendar variables (month and hour of the day) are also used.

Data division. Five distinct test folds are considered (Table 6). Each train and test set consists of
12 and 5 months, respectively, allowing an evaluation under different conditions.

II.5.3.2 Results and Discussion Based in Andrade and Bessa (2017), GBT is used to estimate
quantiles between 0.05 and 0.95. Again, the proposed model is used to estimate the quantiles
τe = {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999}.

The relative quantile score improvement obtained by GBTtGPD over the baseline models is pro-
vided in Table 7, considering nominal proportions τe. The GBTtGPD improvement over the lo-
cal tGPD, QR-based approaches and GBTEVT is greater than 14% for all folds. Regarding GBT
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Table 6 Time period for training and testing folds (solar power dataset).

Fold Train set range Test set range

1 01/05/2013–30/04/2014 01/05/2014–30/09/2014

2 01/10/2013–30/09/2014 01/10/2014–28/02/2015

3 01/11/2014–31/10/2015 01/11/2015–31/07/2015

4 01/08/2014–31/07/2015 01/08/2015–31/12/2015

5 01/01/2015–31/12/2015 01/01/2016–28/06/2016

Table 7 Relative quantile loss improvement (%) over the baseline models (solar power dataset), considering
the extreme quantiles τe.

Folds Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 W.Avg.

GBT 0.65 5.90 -1.42 1.35 3.95 2.09

local tGPD 56.32 42.73 54.18 46.05 49.40 49.74

Exp Tails 8.24 10.52 -2.10 0.08 0.65 3.25

QR EVT 46.66 36.68 41.20 34.17 33.56 38.45

QR EVT T 48.55 40.19 44.85 37.15 35.26 41.20

GBT EVT 25.18 14.84 27.26 19.23 19.72 21.25

and Exp Tails, the improvement over all folds is 2.09% and 3.25%, respectively, but in some folds
our proposal results in greater quantile scores.

To justify the different improvements obtained in the five folds, the statistics of the solar power
generation for the train and test periods are summarized in Figure 12. When high variability is
associated with different distributions for train and test sets, as is the case of fold 3, the selection
of a given number of observations results in more dispersed power measurements and, conse-
quently, the EVT estimator for truncated GPD has longer tails.

Table 8 summarizes the quantile loss for the most extreme quantiles, τ ∈ {0.001, 0.005, 0.01, 0.99,
0.995, 0.999}, averaged over the testing folds. The improvement of the proposed method is slightly
higher for the lower quantiles, but in general, the proposed method shows the best performance.

Figure 13 complements the previous analysis by showing the calibration values for each model.
For the lower tail, the GBTtGPD model exhibits almost perfect calibration for all quantiles. In the
upper tail, it produces a lower underestimation of the quantiles for nominal proportions 0.96 and
0.97. However, when considering all quantiles, QR-based models are the most well-calibrated
models. Yet, when analyzing the sharpness of the forecast intervals generated by these meth-
ods in Figure 14, these methods show that the better calibration comes at the cost of higher
amplitude (i.e., lower sharpness).

Finally, the most extreme forecasted quantiles (i.e., 0.001 and 0.999) obtained with GBT, Exp Tails
and GBT tGPD are depicted in Figure 15. Considering τ = 0.001, Exp Tails and GBT tGPD perform
similarly, while GBT tend to provide a value close to zero every time. For τ = 0.999, GBT and
GBT tGPD clearly outperforms Exp Tails in hours with smaller power production, possibly due to
the fact that for this hours the tails are lightweight.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337
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Figure 12 Boxplot for the solar power considering the division on Table 6.
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Figure 15 Illustrative forecast of extreme quantiles for GBT, Exp Tails and GBT tGPD, considering solar power
data.
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Table 8 Quantile loss for each model (lower is better), with regard to the solar power dataset.

τ 0.001 0.005 0.01 0.99 0.995 0.999

GBT 4.72 20.90 232.16 31.23 17.37 6.12

local tGPD 4.79 23.97 479.42 86.15 44.11 8.72

Exp Tails 5.99 21.39 232.21 34.13 20.07 5.30

QR EVT 4.72 22.37 360.07 58.99 32.78 8.54

QR EVT T 4.95 23.75 360.05 65.28 36.88 9.07

GBT EVT 4.79 23.97 479.42 29.92 17.57 5.06

GBT tGPD† 3.76 ✓ 17.64 ✓ 223.54 ✓ 28.88 ✓ 16.86 ✓ 4.54 ✓

† the proposed method ✓ statistically significant improvement against all others (DM test)

II.6 Concluding Remarks

Accurate forecasting of distribution tails remains a challenge in the RES forecasting literature
since are often associated with data sparsity. Furthermore, information from the tails is of major
importance in power system operation (e.g., reserve capacity setting, dynamic line rating) and
RES market trading. For this reason, concepts were borrowed from EVT for truncated variables
and combined with a non-parametric forecasting framework that includes features created
from spatial-temporal information.

Two major benefits are provided by this work: (a) covariates are used to produce conditional
forecasts of quantiles without any limitation in the number of variables; (b) the parametric EVT-
based estimator can be combined with any non-parametric model (artificial neural networks,
GBT, random forests, etc.) without any major modification. Moreover, the results for a wind
farm located in Galicia, Spain, and a power plant located in Porto, Portugal, show that the
proposed method can provide sharp and calibrated forecasts (important to avoid over- and
under-estimation of risk) and outperforms state-of-the-art methods in terms of the quantile score.
Finally, the proposed method can be transposed to other use cases in the energy sector, such as
risk management in portfolio’s future returns and study grid resilience to adverse weather events.

III. Analysis of the privacy-preserving algorithms

III.1 Introduction

The progress of the internet-of-things (IoT) and big data technologies is fostering a disruptive evo-
lution in the development of innovative data analytics methods and algorithms. This also yields
ideal conditions for data-driven services (from descriptive to prescriptive analysis), in which the
accessibility to large volumes of data is a fundamental requirement. In this sense, the combina-
tion of data from different owners can provide valuable information for end-users and increase
their competitiveness.

In order to combine data coming from different sources, several statistical approaches have
emerged. For example, in time series collaborative forecasting, the vector autoregressive (VAR)
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model has been widely used to forecast variables that may have different data owners. In the
energy sector, the VAR model is deemed appropriate to update very short-term forecasts (e.g.,
from 15 min to 6 h ahead) with recent data, thus taking advantage of geographically distributed
data collected from sensors (e.g., anemometers and pyranometers) and/or wind turbines and
solar power inverters (Tastu et al., 2012; Bessa et al., 2015b). The VAR model can also be used
in short-term electricity price forecasting (Ziel and Weron, 2018). Furthermore, the large num-
ber of potential data owners favors the estimation of the VAR model’s coefficients by applying
distributed optimization algorithms. The alternating direction method of multipliers (ADMM) is a
widely used convex optimization technique; see Boyd et al. (2011). The combination of the VAR
model and ADMM can be used jointly for collaborative forecasting (Cavalcante et al., 2017a),
which consists of collecting and combining information from diverse owners. Collaborative fore-
casting methods require sharing data or coefficients, depending on the structure of the data,
and may or may not be focused on data privacy. This process is also called federated learn-
ing (Yang et al., 2019).

Some other examples of collaborative forecasting include: (a) forecasting and inventory control
in supply chains, in which the benefits of various types of information-sharing options are investi-
gated (Aviv, 2003, 2007); (b) forecasting traffic flow (i.e., traffic speed) at different locations (Ravi
and Al-Deek, 2009); (c) forecasting retail prices of a specific product at every outlet by using
historical retail prices of the product at a target outlet and at competing outlets (Ahmad et al.,
2016). The VAR model is the simplest collaborative model, but conceptually, a collaborative
forecasting model for time series does not need to be a VAR. Furthermore, it is possible to extend
the VAR model to include exogenous information (see Nicholson et al. (2017) for more details)
and to model non-linear relationships with past values (e.g. Li and Genton (2009) extend the
additive model structure to a multivariate setting).

Setting aside the significant potential of the VAR model for collaborative forecasting, the con-
cerns with the privacy of personal and commercially sensitive data constitute a critical barrier
and require privacy-preserving algorithmic solutions for estimating the coefficients of the model.

A confidentiality breach occurs when third parties recover without consent any data provided in
confidence. A single record leaked from a dataset is of more or less importance depending on
the nature of the data. For example, in medical data, where each record represents a different
patient, a single leaked record can disclose all the details about a patient. By contrast, with
renewable energy generation time series, the knowledge that 30 MWh was produced in a given
hour is not very relevant to a competitor. Hereafter, the term confidentiality breach designates
the reconstruction of the entire dataset by another party.

These concerns with data confidentiality motivated research into methods that can handle con-
fidential data, such as linear regression and classification problems (Du et al., 2004b), ridge lin-
ear regression (Karr et al., 2009), logistic regression (Wu et al., 2012), survival analysis (Lu et al.,
2015), and aggregated statistics for time series data (Jia et al., 2014). Aggregated statistics con-
sist of aggregating a set of time series data through a specific function, such as the average
(e.g., the average amount of daily exercise), sum, minimum, and maximum. However, certain
approaches are vulnerable to confidentiality breaches, showing that the statistical methods
developed to protect data privacy should be analyzed to confirm their robustness, and that
additional research may be required to address overlooked limitations (Fienberg et al., 2009).
Furthermore, the application of these methods to the VAR model needs to be carefully ana-
lyzed, since the target variables are the time series of each data owner, and the covariates
are the lags of the same time series, meaning that both target and covariates share a large
proportion of values.

The simplest solution would be to have the data owners agree on a commonly trusted entity
(or a central node) capable of gathering private data, solving the associated model’s fitting
problem on behalf of the data owners, and then returning the results (Pinson, 2016b). However,
in many cases, the data owners are unwilling to share their data even with a trusted central
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node. This has motivated the development of data markets to monetize data and promote
data sharing (Agarwal et al., 2019), which can be driven by blockchain and smart contracts
technology (Kurtulmus and Daniel, 2018).

Another possibility would be to apply differential privacy mechanisms, which consist of adding
properly calibrated noise to an algorithm (e.g., adding noise to the coefficients estimated during
each iteration of the fitting procedure) or directly to the data. Differential privacy is not an
algorithm, but rather a rigorous definition of privacy that is useful for quantifying and bounding
privacy loss (i.e., how much original data a party can recover when receiving data protected
with added noise) (Dwork and Smith, 2010). It requires computations insensitive to changes in
any particular record or intermediate computations, thereby restricting data leaks through the
results; see A. While computationally efficient and popular, these techniques invariably degrade
the predictive performance of the model (Yang et al., 2019) and are not very effective, as we
show in what follows.

This section is a review of the state-of-the-art in statistical methods for collaborative forecast-
ing with privacy-preserving approaches. This work is not restricted to a simple overview of the
existing methods. It includes a critical evaluation of said methods from a mathematical and nu-
merical point of view—namely, when applied to the VAR model. The major contribution to the
literature is to show gaps and downsides to current methods and to present insights for further
improvements towards fully privacy-preserving VAR forecasting methods.

In this work, we analyze existing state-of-the-art privacy-preserving techniques, dividing them
into the following groups:

• Data transformation methods: each data owner transforms the data before the model’s
fitting process, by adding randomness to the original data in such a way that high accuracy
and privacy can be achieved at the end of the fitting process. The statistical method is
independent of the transformation function and it is applied to the transformed data.

• Secure multi-party computation protocols: data encryption occurs while fitting the statis-
tical model (i.e., intermediate calculations of an iterative process) and data owners are
required to conjointly compute a function over their data with protocols for secure ma-
trix operations. A protocol consists of rules that determine how data owners must operate
to determine said function. These rules establish the calculations assigned to each data
owner, what information should be shared among them, and the conditions necessary for
the adequate implementation of said calculations.

• Decomposition-based methods: the optimization problem is decomposed into sub-problems,
allowing each data owner to fit model coefficients separately.

The remainder of the paper is organized as follows: Section III.2 describes the state-of-the-art
for collaborative privacy-preserving forecasting. Section III.3 describes the VAR model, as well
as coefficients estimators, and critically evaluates state-of-the-art methods when applied to the
VAR model. Solar energy time series data are used in the numerical analysis. Section III.4 offers
a discussion and comparison of the presented approaches, and conclusions are presented in
Section III.5.

III.2 Privacy-preserving Approaches

For notation purposes, vectors and matrices are denoted by bold lowercase and bold upper-
case letters, e.g., a and A, respectively. The vector a = [a1, . . . , ak]

⊤ represents a column vector
with k dimension, where ai denotes scalars, i = 1, . . . , k. The column-wise joining of vectors and
matrices is indicated by [a,b] and [A,B], respectively.
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Figure 16 Common data division structures.

Furthermore, Z ∈ RT×M is the covariate matrix and Y ∈ RT×N is the target matrix, considering n
data owners. The values T , M and N are the number of records, covariates and target variables,
respectively. When considering collaborative forecasting models, different divisions of the data
may be considered. Figure 16 shows the two most common:

1. Data split by records: the data owners, represented as Ai, i = 1, . . . , n, observe the same
features for different groups of samples, e.g., different timestamps in the case of time series.
Z is split into Zr

Ai
∈ RTAi

×M and Y into Yr
Ai

∈ RTAi
×N , such that

∑n
i=1 TAi = T ;

2. Data split by features: the data owners observe different features of the same records. Z =
[ZA1

, . . . ,ZAn
], Y = [YA1

, . . . ,YAn
], such that ZAi

∈ RT×MAi , YAi
∈ RT×NAi , with

∑n
i=1 MAi

=
M and

∑n
i=1 NAi

= N ;

This section summarizes state-of-the-art approaches to deal with privacy-preserving collabora-
tive forecasting methods. Section III.2.1 describes the methods that ensure confidentiality by
transforming the data. Section III.2.2 presents and analyzes the secure multi-party protocols.
Section III.2.3 describes the decomposition-based methods.

III.2.1 Data Transformation Methods

Data transformation methods use operator T to transform the data matrix X into X̃ = T (X).
Then, the problem is solved in the transformed domain. A common method of masking sensi-
tive data is adding or multiplying it by perturbation matrices. In additive randomization, random
noise is added to the data in order to mask the values of records. Consequently, the more
masked the data becomes, the more secure it will be, as long as the differential privacy defini-
tion is respected (see A). However, the use of randomized data implies the deterioration of the
estimated statistical models, and the estimated coefficients of said data should be close to the
estimated coefficients after using original data (Zhou et al., 2009).

Multiplicative randomization involves changing the dimensions of the data by multiplying it by
random perturbation matrices. If the perturbation matrix W ∈ Rk×m multiplies the original data
X ∈ Rm×n on the left (pre-multiplication), i.e., WX, then it is possible to change the number of
records; otherwise, if W ∈ Rn×s multiplies X ∈ Rm×n on the right (post-multiplication), i.e., XW, it
is possible to modify the number of features. Hence, it is possible to change both dimensions by
applying both pre- and post-multiplication by perturbation matrices.
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III.2.1.1 Single Data Owner The use of linear algebra to mask data is a common practice in
recent outsourcing approaches, in which a data owner resorts to the cloud to fit model coef-
ficients without sharing confidential data. For example, in Ma et al. (2017) the coefficients that
optimize the linear regression model

y = Xβ + ε , (26)

with covariate matrix X ∈ Rm×n, target variable y ∈ Rm, coefficient vector β ∈ Rn and error
vector ε ∈ Rn, are estimated through the regularized least squares estimate for the ridge linear
regression, with penalization term λ > 0,

β̂ridge = (X⊤X+ λI)−1X⊤y. (27)

In order to compute β̂ridge via a cloud server, the authors consider that

β̂ridge = A−1b , (28)

where A = (X⊤X+λI)−1 and b = X⊤y, A ∈ Rn×n, b ∈ Rn. Then, the masked matrices MAN and
M(b+Ar) are sent to the server, which computes

β̂′ = (MAN)−1(M(b+Ar)) , (29)

where M, N, and r are randomly generated matrices, M,N ∈ Rn×n, r ∈ Rn. Finally, the data
owner receives β̂′ and recovers the original coefficients by computing β̂ridge = Nβ̂′ − r.

Data normalization is a data transformation approach that masks data by transforming the orig-
inal features into a new range through the use of a mathematical function. There are many
methods of data normalization, the most important ones being z-score and min-max normaliza-
tion (Jain and Bhandare, 2011), which are useful when the actual minimum and maximum values
of the features are unknown. However, in many applications, these values are either known or
publicly available, and normalized values still encompass commercially valuable information.

For time series data, other approaches to data randomization make use of the Fourier and
wavelet transforms. A Fourier transform can represent periodic time series as a linear combina-
tion of sinusoidal components (sine and cosine). In Papadimitriou et al. (2007), each data owner
generates a noise time series by (i) adding Gaussian noise to relevant coefficients, or (ii) disrupt-
ing each sinusoidal component by randomly changing its magnitude and phase. Similarly, a
wavelet transform can represent time series as a combination of functions (e.g., the Mexican
hat or Poisson wavelets), and randomness can be introduced by adding random noise to the
coefficients (Papadimitriou et al., 2007). However, there are no privacy guarantees, since noise
does not respect any formal definition, unlike differential privacy.

III.2.1.2 Multiple Data Owners The task of masking data is even more challenging when deal-
ing with different data owners, since it is crucial to ensure that the transformations that data
owners make to their data preserve the real relationship between the variables or the time se-
ries.

Usually, for generalized linear models (e.g., linear regression models, logistic regression models,
etc.), where n data owners observe the same features –i.e., data are split by records, as illus-
trated in Figure 16– each data owner Ai, i = 1, ..., n, can individually multiply their covariate
matrix Zr

Ai
∈ RTAi

×M and target variable Yr
Ai

∈ RTAi
×N by a random matrix MAi

∈ Rk×TAi (with
a jointly defined k value), providing MAi

Zr
Ai
,MAi

Yr
Ai

to the competitors (Mangasarian, 2012; Yu
et al., 2008), which allows pre-multiplying the original data,

Zr =


Zr

A1

...

Zr
An

 and Yr =


Yr

A1

...

Yr
An

 ,
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by M = [MA1
, . . . ,MAn

], since

MZr = MA1
Zr

A1
+ · · ·+MAn

Zr
An

. (30)

The same holds for the multiplication MYr, M ∈ Rk×
∑n

i=1 TAi ,Zr ∈ R
∑n

i=1 TAi
×M ,Yr ∈ R

∑n
i=1 TAi

×N .
This definition of M is possible because when multiplying M and Zr, the j-th column of M only
multiplies the j-th row of Zr. For some statistical learning algorithms, a property of such a matrix is
the orthogonality, i.e., M−1 = M⊤. Model fitting is then performed with this new representation of
the data, which preserves the solution to the problem. This is true of the linear regression model
because the multivariate least squares estimate for the linear regression model with covariate
matrix MZr and target variable MYr is

B̂LS =
(
(Zr)⊤Zr

)−1 (
(Zr)⊤Yr

)
, (31)

which is also the multivariate least squares estimate for the coefficients of a linear regression
considering data matrices Zr and Yr, respectively. Despite this property, the application in
least absolute shrinkage and selection operator (LASSO) regression does not guarantee that the
sparsity of the coefficients is preserved, and careful analysis is needed to ensure the correct
estimation of the model (Zhou et al., 2009). Liu et al. (2008) discussed attacks based on prior
knowledge, in which a data owner estimates M by knowing a small collection of original data
records. Furthermore, when considering the linear regression model for which Z = [ZA1

, . . . ,ZAn
]

and Y = [YA1
, . . . ,YAn

], i.e., data is split by features, it is not possible to define a matrix M∗ =
[M∗

A1
, . . . ,M∗

An
] ∈ Rk×T and then privately compute M∗Z and M∗Y, because as explained, the

j-th column of M∗ multiplies the j-th row of Z, which, in this case, consists of data coming from
different owners.

Similarly, if the data owners observe different features, a linear programming problem can be
solved in such a way that individual data owners multiply their data XAi

∈ RT×MAi by a private
random matrix NAi

∈ RMAi
×s (with a jointly defined value s) and, then, shares XAi

NAi
(Man-

gasarian, 2011), i = 1, ..., n, which is equivalent to post-multiplying the original dataset X = [XA1
,

...,XAn ] by N = [N⊤
A1

, . . . ,N⊤
An

]⊤, which represents the joining of NAi , i = 1, . . . , n, through a row-
wise operation. However, the obtained solution is in a different space, and it needs to be recov-
ered by multiplying it by the corresponding NAi

, i = 1, ..., n. For linear regression, which models
the relationship between the covariates Z ∈ RT×M and the target Y ∈ RT×N , this algorithm cor-
responds to solving a linear regression that models the relationship between ZNz and YNy. That
is,the solution is given by

B̂′
LS = argmin

B

(
1

2
∥YNy − ZNzB∥22

)
, (32)

where ZNz and YNy are shared matrices. Two private matrices Nz ∈ RM×s, Ny ∈ RN×w are
required to transform the data, since the number of columns for Z and Y is different (s and w
values are jointly defined). The problem is that the multivariate least squares estimate for (32) is
given by

B̂′
LS =

(
(ZNz)

⊤(ZNz)
)−1(

(ZNz)
⊤(YNy)

)
= (Nz)

−1 (Z⊤Z)−1Z⊤Y︸ ︷︷ ︸
= argminB

(
1
2∥Y − ZB∥2

2

)Ny , (33)

which implies that this transformation does not preserve the coefficients of the linear regression
considering data matrices Z and Y, respectively, and therefore Nz and Ny would have to be
shared.

Generally, data transformation is performed through the generation of random matrices that
pre- or post- multiply the private data. However, there are other techniques through which data
are transformed with matrices defined according to that data, as with principal component
analysis (PCA). PCA is a widely used statistical procedure for reducing the dimensions of data,
by applying an orthogonal transformation that retains as much data variance as possible. Con-
sidering the matrix W ∈ RM×M of the eigenvectors of the covariance matrix Z⊤Z, Z ∈ RT×M ,

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

33



D4.1 Distributed and Collaborative Forecasting

PCA can be used to represent the data by L variables performing ZNL, where NL denotes the
first L columns of W, L = 1, ...,M . For data split by records, Dwork et al. (2014b) suggested a
differentially private PCA, assuming that each data owner takes a random sample of the fitting
records to form the covariate matrix. In order to protect the covariance matrix, one can add
Gaussian noise to this matrix (determined without sensible data sharing), leading to the com-
putation of the principal directions of the noisy covariance matrix. To finalize the process, the
data owners multiply the sensible data by said principal directions before feeding the data into
the model fitting. Nevertheless, the application to collaborative linear regression with data split
by features would require sharing the data when computing the Z⊤Z matrix, since Z⊤ is divided
by rows. Furthermore, as explained in (32) and (33), it is difficult to recover the original linear
regression model by performing the estimation of the coefficients using transformed covariates
and target matrices, through post-multiplication by random matrices.

Regarding the data normalization techniques mentioned above, Zhu et al. (2015) proposed that
data owners mask their data by using z-score normalization, followed by the sum of random
noise (from uniform or Gaussian distributions), to allow greater control over their data. The data
can then be shared with a recommendation system that fits the model. However, the noise does
not meet the differential privacy definition (see A).

For data collected by different sensors (e.g., smart meters or mobile users) it is common to
proceed to the aggregation of data through privacy-preserving techniques – for instance, by
adding carefully calibrated Laplacian noise to each time series (Fan and Xiong, 2014; Soria-
Comas et al., 2017). The addition of noise to the data is an appealing technique given its easy
application. However, even if this noise meets the definition of differential privacy, there is no
guarantee that the resulting model will perform well.

III.2.2 Secure Multi-party Computation Protocols

In secure multi-party computations, intermediate calculations required by the fitting algorithms,
which require data owners to jointly compute a function over their data, are performed through
protocols for secure operations, such as matrix addition or multiplication (as discussed in Sec-
tion III.2.2.1). In these approaches, the encryption of the data occurs while fitting the model (as
discussed in Section III.2.2.2), instead of as a pre-processing step, as with the data transformation
methods described in the previous section.

III.2.2.1 Linear Algebra-based Protocols The simplest secure multi-party computation proto-
cols are based on linear algebra and address the situation where matrix operations with confi-
dential data are necessary. Du et al. (2004b) proposed secure protocols for product A.C and
inverse of the sum (A + C)−1, for any two private matrices A and C with appropriate dimen-
sions. The aim is to fit a (ridge) linear regression between two data owners who observe different
covariates but share the target variable. Essentially, the A.C protocol transforms the product
of matrices, A ∈ Rm×s, C ∈ Rs×k, into a sum of matrices, Va + Vc, that are equally secret,
Va,Vc ∈ Rm×k. However, since the estimate of the coefficients for linear regression with covari-
ate matrix Z∈ RT×M and target matrix Y∈ RT×N is

B̂LS = (Z⊤Z)−1Z⊤Y, (34)

the A.C protocol is used to perform the computation of Va,Vc such that

Va +Vc = (Z⊤Z) , (35)

which requires the definition of an (A+C)−1 protocol to compute

(Z⊤Z)−1 = (Va +Vc)
−1. (36)
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For the A.C protocol, A ∈ Rm×s, C ∈ Rs×k, there are two different formulations, according to the
existence, or not, of a third entity. In cases where only two data owners perform the protocol, a
random matrix M ∈ Rs×s is jointly generated and the A.C protocol achieves the following results,
by dividing the M and M−1 into two matrices with the same dimensions:

AC = AMM−1C = A[Mleft,Mright]

 (M−1)top

(M−1)bottom

C (37)

= AMleft(M
−1)topC+AMright(M

−1)bottomC , (38)

where Mleft and Mright respectively represent the left and right part of M, and (M−1)top and
(M−1)bottom respectively denote the top and bottom part of M−1. In this case,

Va = AMleft(M
−1)topC, (39)

is derived by the first data owner, and

Vc = AMright(M
−1)bottomC, (40)

by the second data owner. Otherwise, a third entity is assumed to generate random matrices
Ra, ra and Rc, rc, such that

ra + rc = RaRc, (41)

which are sent to the first and second data owners, respectively, Ra ∈ Rm×s, Rc ∈ Rs×k, ra, rc ∈
Rm×k. In this case, the data owners start by trading the matrices A+Ra and C+Rc, and then
the second data owner randomly generates a matrix Vc and sends

T = (A+Ra)C+ (rc −Vc) , (42)

to the first data owner in such a way that, at the end of the A.C protocol, the first data owner
keeps the information

Va = T+ ra −Ra(C+Rc) , (43)

and the second keeps Vc (since the sum of Va with Vc is AC).

Finally, the (A+C)−1 protocol considers two steps, where A,C ∈ Rm×k. Initially, the matrix
(A+C) is jointly converted to P(A+C)Q using two random matrices, P and Q, which are only
known to the second data owner preventing the first one from learning matrix C, P ∈ Rr×m,Q ∈
Rk×t. The results of P(A+C)Q are known only by the first data owner, who can conduct the
inverse computation Q−1(A + C)−1P−1. In the following step, the data owners jointly remove
Q−1 and P−1 and get (A+C)−1. Both steps can be achieved by applying the A.C protocol.
Although these protocols are efficient techniques for solving problems with a shared target vari-
able, one cannot say the same when Y is private, as further elaborated in Section III.3.3.2.

Another example of secure protocols for producing private matrices can be found in Karr et al.
(2009). Their protocol applies data from multiple owners who observe different covariates and
target features – which are also assumed to be secret. The proposed protocol allows two data
owners, with correspondent data matrix A and C, A ∈ Rm×k, C ∈ Rm×s, to perform the multi-
plication A⊤C as follows: (i) the first data owner generates W = [w1, ....,wg], W ∈ Rm×g, such
that

w⊤
i Aj = 0 , (44)

where Aj is the j-th column of A matrix, i = 1, ..., g and j = 1, ..., k, and then sends W to the
second owner; (ii) the second data owner computes (I−WW⊤)C and shares it; and (iii) the first
data owner performs

A⊤(I−WW⊤)C= A⊤C− A⊤WW⊤C︸ ︷︷ ︸
=0, since A⊤W=0

= A⊤C , (45)
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without the possibility of recovering C, since the rank((I−WW⊤)C) = m−g. To generate W, Karr
et al. (2009) suggested selecting g columns from the Q matrix, computed by QR decomposition
of the private matrix C, and excluding the first k columns. Furthermore, the authors defined the
optimal value for g according to the number of linearly independent equations (represented by
NLIE) on the other data owner’s data. The second data owner obtains A⊤C (providing ks values,
since A⊤C ∈ Rk×s) and receives W, knowing that A⊤W = 0 (which contains kg values). That is,

NLIE(Owner#1) = ks+ kg. (46)

Similarly, the first data owner receives A⊤C (providing ks values) and (I−WW⊤)C (providing
s(m− g) values since (I−WW⊤)C ∈ Rm×s and rank(W) = m− g). That is,

NLIE(Owner#2) = ks+ s(m− g). (47)

Karr et al. (2009) determined the optimal value for g by assuming that both data owners equally
share NLIE, so that no agent benefits from the order assumed when running the protocol:

|NLIE(Owner#1) − NLIE(Owner#2)| = 0 , (48)

which allows the optimal value g∗ = sm
k+s to be obtained.

An advantage to this approach, when compared to the one proposed by Du et al. (2004b), is
that W is simply generated by the first data owner, while the invertible matrix M proposed by Du
et al. (2004b) needs to be agreed upon by both parties, which entails substantial communica-
tion costs when the number of records is high.

III.2.2.2 Homomorphic Cryptography-based Protocols The use of homomorphic encryption
was successfully introduced in model fitting and works by encrypting the original values in such
a way that the application of arithmetic operations in the public space does not compromise
the encryption. Homomorphic encryption ensures that, after the decryption stage (in the pri-
vate space), the resulting values correspond to the ones obtained by operating on the orig-
inal data. Consequently, homomorphic encryption is especially responsive and engaging to
privacy-preserving applications. As an example, the Paillier homomorphic encryption scheme
stipulates that (i) two integer values encrypted with the same public key may be multiplied to-
gether to give an encryption of the sum of the values, and (ii) an encrypted value may be taken
to some power, yielding encryption of the product of the values. Hall et al. (2011) proposed a
secure protocol for summing and multiplying real numbers by extending Paillier encryption, aim-
ing to perform the matrix products required to solve linear regression for data divided by features
or records.

Equally based in Paillier encryption, the work of Nikolaenko et al. (2013) proposed a scheme
whereby two parties can correctly perform their tasks without teaming up to discover private
data: a crypto-service provider (i.e., a party that provides software- or hardware-based encryp-
tion and decryption services) and an evaluator (i.e., a party who runs the learning algorithm).
With this scheme, secure linear regression can be performed for data split by records. Sim-
ilarly, Chen et al. (2018) used Paillier and ElGamal encryption to fit the coefficients of ridge
linear regression while including these entities. In both works, the use of the crypto-service
provider is prompted by assuming that the evaluator does not corrupt its computation by pro-
ducing an incorrect result. Two conditions are required to prevent confidentiality breaches: the
crypto-service provider must publish the system keys correctly, and there can be no collusion
between the evaluator and the crypto-service provider. The data can be reconstructed if the
crypto-service provider supplies correct keys to a curious evaluator. For data divided by fea-
tures, Gascón et al. (2017) extended the approach of Nikolaenko et al. (2013) by designing a
secure multi/two-party inner product.

Jia et al. (2018) explored a privacy-preserving data classification scheme with a support vector
machine, to ensure that the data owners can successfully conduct data classification without
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exposing their learned models to a “tester”, while the “testers” keep their data private. For exam-
ple, a hospital (owner) can create a model to learn the relation between a set of features and
the existence of a disease, and another hospital (tester) can use this model to obtain forecasting
values, without any knowledge about the model. The method is supported by cryptography-
based protocols for secure computation of multivariate polynomial functions, but unfortunately,
this only works for data split by records.

Li and Cao (2012) addresses the privacy-preserving computation of the sum and the minimum
of multiple time series collected by different data owners, by combining homomorphic encryp-
tion with a novel key management technique to support large data dimensions. These statistics
with a privacy-preserving solution for individual user data are quite useful for exploring mobile
sensing in different applications such as environmental monitoring (e.g., the average level of
air pollution in an area), traffic monitoring (e.g., the highest moving speed during rush hour),
healthcare (e.g., the number of users infected by a flu), etc. Liu et al. (2018b) and Li et al. (2018)
explored similar approaches based on Paillier or ElGamal encryption concerning their appli-
cation to smart grids. However, the estimation of models such as the linear regression model
also requires protocols for the secure product of matrices. Homomorphic cryptography was fur-
ther explored to solve secure linear programming problems through intermediate steps of the
simplex method, which optimizes the problem by using slack variables, tableaus, and pivot vari-
ables (Hoogh, 2012). However, the author observed that the proposed protocols are not viable
when solving linear programming problems with numerous variables and constraints, which are
common in practice.

Aono et al. (2017) combined homomorphic cryptography with differential privacy in order to
deal with data split by records. In summary, if data are split by records, as illustrated in Figure 16,
each i-th data owner observes the covariates Zr

Ai
and target variable Yr

Ai
, Zr

Ai
∈ RTAi

×M ,Yr
Ai

∈
RTAi

×N , i = 1, ..., n. Then, (Zr
Ai
)⊤Zr

Ai
and (Zr

Ai
)⊤Yr

Ai
are computed and Laplacian noise is added

to them. This information is encrypted and sent to the cloud server, which works on the en-
crypted domain, summing all the matrices received. Finally, the server provides the result of
this sum to a client who decrypts it and obtains relevant information to perform the linear re-
gression, i.e.,

∑n
i=1(Z

r
Ai
)⊤Zr

Ai
,
∑n

i=1(Z
r
Ai
)⊤Yr

Ai
, etc. However, the addition of noise can result in

a poor estimation of the coefficients, limiting the performance of the model. Furthermore, this
approach is not valid when data are divided by features, because Z⊤Z ̸=

∑n
i=1 Z

⊤
Ai
ZAi and

Z⊤Y ̸=
∑n

i=1 Z
⊤
Ai
YAi .

In summary, cryptography-based methods are usually robust to confidentiality breaches but
may require a third party to generate keys, as well as external entities to per- form the computa-
tions in the encrypted domain. Furthermore, the high computational complexity is a challenge
when dealing with real applications (Hoogh, 2012; Zhao et al., 2019; Tran and Hu, 2019).

III.2.3 Decomposition-based Methods

In decomposition-based methods, problems are solved by breaking them up into smaller sub-
problems and solving each separately, either in parallel or in sequence. Consequently, private
data are naturally distributed between the data owners. However, this natural division requires
sharing intermediate information. For that reason, some approaches combine decomposition-
based methods with data transformation or homomorphic cryptography-based methods; here,
we focus on these methods separately.

III.2.3.1 ADMM Method The ADMM is a powerful algorithm that circumvents problems without
a closed-form solution, such as the LASSO regression. The algorithm is efficient and well suited
for distributed convex optimization, in particular for large-scale statistical problems (Boyd et al.,
2011). Let E be a convex forecast error function between the true values Y and the forecasted
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values given by the model Ŷ = f(B,Z) using a set of covariates Z and coefficients B, and
let R be a convex regularization function. The ADMM method (Boyd et al., 2011) solves the
optimization problem

min
B

E(B) +R(B), (49)

by splitting B into two variables (B and H),

min
B,H

E(B) +R(H) subject to AB+CH = D , (50)

and using the corresponding augmented Lagrangian function formulated with dual variable U,

L(B,H,U) = E(B) +R(H) +U⊤(AB+CH−D) +
ρ

2
∥AB+CH−D∥22. (51)

The quadratic term ρ
2∥AB+CH−D∥22 provides theoretical convergence guarantees because it

is strongly convex. This implies mild assumptions on the objective function. Even if the original ob-
jective function is convex, the augmented Lagrangian is strictly convex (in some cases strongly
convex) (Boyd et al., 2011).

The ADMM solution is estimated by the following iterative system:
Bk+1 := argmin

B
L(B,Hk,Uk)

Hk+1 := argmin
H

L(Bk+1,H,Uk)

Uk+1 := Uk + ρ(ABk+1 +CHk+1 −D).

(52)

For data split by records, the consensus problem splits primal variables B and separately opti-
mizes the decomposable cost function E(B) =

∑n
i=1 Ei(BAi) for all data owners under global

consensus constraints. Considering that the sub-matrix Zr
Ai

∈ RTAi
×M of Z ∈ RT×M corresponds

to the local data of the i−th data owner, the coefficients BAi
∈ RM×N are given by

argmin
Γ

∑
i

Ei(BAi
) +R(H)

s.t. BA1
−H = 0, BA2

−H = 0, . . . , BAn
−H = 0 ,

(53)

where Γ = {BA1
, . . . ,BAn

,H}. In this case, Ei(BAi
) measures the error between the true values

Yr
Ai

and the forecasted values given by the model ŶAi
= f(BAi

,Zr
Ai
).

For data split by features, the sharing problem splits Z into ZAi
∈ RT×MAi , and B into BAi

∈
RMAi

×N . Auxiliary HAi
∈ RT×N are introduced for the i-th data owner based on ZAi

and BAi
. In

this case, the sharing problem is formulated based on the decomposable cost function E(B) =
E(
∑n

i=1 BAi) and R(B) =
∑n

i=1 R(BAi). Then, BAi is given by

argmin
Γ′

E(
∑
i

HAi
) +

∑
i

R(BAi
)

s.t. ZA1BA1 −HA1 = 0, ZA2BA2 −HA2 = 0, . . . , ZAnBAn −HAn = 0 ,

(54)

where Γ′ = {BA1 , . . . ,BAn ,HA1 , . . . ,HAn}. In this case, E(
∑n

i=1 HAi) is related to the error be-
tween the true values Y and the forecasted values given by the model Ŷ =

∑n
i=1 f(BAi

,ZAi
).

Undeniably, ADMM provides a desirable formulation for parallel computing (Dai et al., 2018).
However, it is not possible to ensure continuous privacy, since the ADMM requires intermediate
calculations, allowing the most curious competitors to recover the data after enough iterations
by solving non-linear equation systems (Bessa et al., 2018). An ADMM-based distributed LASSO
algorithm, in which each data owner only commu nicates with its neighbor to protect data
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privacy, is described by Mateos et al. (2010a), with applications in signal processing and wireless
communications. Unfortunately, this approach is only valid in cases where data are distributed
by records.

The concept of differential privacy was also explored in the ADMM by introducing randomization
when computing the primal variables. That is, during the iterative process, each data owner es-
timates the corresponding coefficients and perturbs them by adding random noise (Zhang and
Zhu, 2017). However, these local randomization mechanisms can result in a non-convergent
algorithm with poor performance even under moderate privacy guarantees. To address these
concerns, Huang et al. (2019) used an approximate augmented Lagrangian function and Gaus-
sian mechanisms with time-varying variance. Nevertheless, the addition of noise is insufficient to
guarantee privacy, as a competitor can potentially use the results from all iterations to infer in-
formation (Zhang et al., 2018).

Zhang et al. (2019) recently combined a variant of the ADMM with homomorphic encryption for
cases where data are divided by records. As explained by the authors, however, the incorpo-
ration of their mechanism in decentralized optimization under data divided by features is quite
difficult. Whereas for data split by records, the algorithm only requires sharing the coefficients,
the exchange of coefficients in data split by features is insufficient, since each data owner ob-
serves different features. Division by features requires a local estimation of Bk+1

Ai
∈ RMAi

×N by
using information related to ZAj

Bk
Aj

, and Y, meaning that, for each new iteration, an i−th data
owner shares TN new values, instead of MAi

N (from Bk
Ai

), i, j = 1, ..., n.

For data split by features, Zhang and Wang (2018b) proposed a probabilistic forecasting method
that combines ridge linear quantile regression with the ADMM. The output is a set of quantiles
instead of a unique value (usually the expected value). In this case, the ADMM is applied to
split the corresponding optimization problem into sub-problems, which are solved by each data
owner, assuming that all the data owners communicate with a central node in an iterative pro-
cess. Consequently, intermediate results are provided, rather than private data. In fact, the
authors claimed that their method achieves wind power probabilistic forecasting with off-site in-
formation in a privacy-preserving and distributed fashion. However, the authors did not conduct
an in-depth analysis of the method, as shown in III.3. Furthermore, their method assumes that
the central node knows the target matrix.

III.2.3.2 Newton-Raphson Method The ADMM is now a standard technique used in research
on distributed computing in statistical learning, but it is not the only one. For generalized lin-
ear models, distributed optimization for model fitting has been efficiently achieved through the
Newton–Raphson method, which minimizes a twice differentiable forecast error function E be-
tween the true values Y and the forecasted values given by the model Ŷ = f(B,Z) using a set
of covariates Z, including lags of Y. B is the coefficient matrix, which is updated iteratively. The
estimate for B at iteration k, represented by Bk, is given by

Bk+1 = Bk − (∇2E(Bk))−1∇E(Bk) , (55)

where ∇E and ∇2E are the gradient and Hessian of E, respectively. With certain properties,
convergence to a certain global minima can be guaranteed (Nocedal and Wright, 2006).

In order to enable distributed optimization, ∇E and ∇2E must be decomposable over multiple
data owners. That is, these functions can be rewritten as the sum of functions that depend
exclusively on local data from each data owner. Slavkovic et al. (2007) proposed a secure
logistic regression approach for data split by records and features by using secure multi-party
computation protocols during iterations of the Newton–Raphson method. Although distributed
computing is feasible, there is no sufficient guarantee of data privacy, because it is an iterative
process. While a single iteration cannot reveal private information, sufficient iterations can: in a
logistic regression with data split by features, for each iteration k the data owners exchange the
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matrix ZAi
Bk

Ai
, making it possible to recover the local data ZAi

after enough iterations (Fienberg
et al., 2009).

An example of an earlier promising work that combined logistic regression with the Newton-
Raphson method for data distributed by records was the Grid binary LOgistic REgression (GLORE)
framework (Wu et al., 2012). The GLORE model is based on model sharing rather than patient-
level data, and it has motivated subsequent improvements. Some of these continue to suffer
from confidentiality breaches on intermediate results, and others resort to protocols for matrix
addition and multiplication. Later, Li et al. (2015b) explored the issue concerning the New-
ton–Raphson method over data distributed by features by considering a server that receives the
transformed data and computes the intermediate results, returning them to each data owner.
In order to avoid disclosing local data while obtaining an accurate global solution, the authors
applied the kernel trick to obtain the global linear matrix, computed using dot products of local
records (ZAi

Z⊤
Ai

), which can be used to solve the dual problem for logistic regression. However,
they identified a technical challenge from scaling up the model with a large sample size, since
each record requires a parameter.

III.2.3.3 Gradient-Descent Methods Different gradient-descent methods have also been ex-
plored, aiming to minimize a forecast error function E between the true values Y and the fore-
casted values given by the model Ŷ = f(B,Z) using a set of covariates Z, including lags of Y.
The coefficient matrix B is updated iteratively such that the estimate at iteration k, Bk, is given
by

Bk = Bk−1 + η∇E(Bk−1) , (56)

where η is the learning rate. This allows for parallel computation when the optimization function
E is decomposable. A common error function is the multivariate least squared error:

E(B) =
1

2
∥Y − f(B,Z)∥2. (57)

With certain properties, convergence to a certain global minima can be guaranteed (Nesterov,
1998): (i) E is convex, (ii) ∇E is Lipschitz-continuous with constant L, i.e., for any F, G,

∥∇E(F)−∇E(G)∥2 ≤ L∥F−G∥2 , (58)

and (iii) η ≤ 1/L.

Han et al. (2010) proposed a privacy-preserving linear regression technique for data distributed
over features (with shared Y) by combining distributed gradient descent with secure protocols,
based on pre- or post-multiplication of the data by random private matrices. Song et al. (2013)
introduced differential privacy by adding random noise W in the B updates:

Bk = Bk−1 + η
(
∇E(Bk−1) +W

)
. (59)

When this iterative process uses a few randomly selected samples (or even a single sample),
rather than the entire data, the process is known as stochastic gradient descent (SGD). The
authors argued that the trade-off between performance and privacy is most pronounced when
smaller batches are used.

III.3 Collaborative Forecasting with VAR

This section presents a privacy analysis of collaborative forecasting with the VAR model, a model
for the analysis of multivariate time series. The VAR model is not only used for forecasting tasks in
different domains (and with significant improvements over univariate autoregressive models), but
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Figure 17 Common data division structures and VAR model.

also for structural inference, where the main objective is to explore certain assumptions about
the causal structure of the data (Toda and Phillips, 1993). A variant with LASSO regularization is
also covered. We critically evaluate the methods described in Section III.2 from a mathematical
and numerical point of view in Section III.3.3. The solar energy time series dataset and R scripts
are published in an online supplement (Gonçalves and Bessa, 2020).

III.3.1 VAR Model Formulation

Let {yt}Tt=1 be an n-dimensional multivariate time series, where n is the number of data own-
ers. Then, {yt}Tt=1 follows a VAR model with p lags, represented as VARn(p), when the following
relationship holds:

yt = η +

p∑
ℓ=1

yt−ℓB
(ℓ) + εt , (60)

for t = 1, . . . , T , where η = [η1, . . . , ηn] is the constant intercept (row) vector, η ∈ Rn; B(ℓ) represents
the coefficient matrix at lag ℓ = 1, ..., p, B(ℓ) ∈ Rn×n, and the coefficient associated with lag ℓ of
time series i (to estimate time series j) is positioned at (i, j) of B(ℓ), for i, j = 1, ..., n; and εt = [ε1,t,
. . . , εn,t], εt ∈ Rn, indicates a white noise vector that is independent and identically distributed
with mean zero and nonsingular covariance matrix. By simplification, yt is assumed to follow
a centered process, η = 0, i.e., as a vector of zeros of appropriate dimensions. A compact
representation of a VARn(p) model reads as follows:

Y = ZB+E , (61)
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Y of ith data owner︷ ︸︸ ︷ covariates values of ith data owner︷ ︸︸ ︷

yi,t yi,t−1 yi,t−2 yt−3,i . . . yi,t−p+1 yi,t−p

yi,t+1 yi,t yi,t−1 yt−2,i . . . yi,t−p+2 yi,t−p+1

yi,t+2 yi,t+1 yi,t yt−1,i . . . yi,t−p+3 yi,t−p+2

...
...

...
...

...
...

...

yi,t+h yi,t+h−1 yi,t+h−2 yt+h−3,i . . . yi,t+h−p+1 yi,t+h−p

Figure 18 Illustration of the data used by the i-th data owner when fitting a VAR model.

where

Y =


y1

...

yT

 , B =


B(1)

...

B(p)

 , Z =


z1

...

zT

 , and E =


ε1

...

εT

 ,

are obtained by joining the vectors row-wise, and defining, respectively define the T×n response
matrix, the np× n coefficient matrix, the T × np covariate matrix, and the T × n error matrix, with
zt = [yt−1, . . . ,yt−p].

Notice that the VAR formulation adopted in this paper is not the usual Y⊤ = B⊤Z⊤+E⊤, because
a large proportion of the literature on privacy-preserving techniques derives from the standard
linear regression problem, in which each row is a record and each column is a feature.

Notwithstanding the high potential of the VAR model for collaborative forecasting, namely by
linearly combining time series from different data owners, data privacy or confidentiality issues
might hinder this approach. For instance, renewable energy companies, competing in the same
electricity market, will never share their electrical energy production data, even if this leads to a
forecast error improvement in all individual forecasts.

For classical linear regression models, there are several techniques for estimating coefficients
without sharing private information. However, in the VAR model, the data are divided by features
(Figure 17) and the variables to be forecasted are also covariates. This is challenging for privacy-
preserving techniques (especially because it is also necessary to protect the data matrix Y, as
illustrated in Figure 18). In what follows, when defining a VAR model, YAi

∈ RT×1 and ZAi
∈ RT×p

respectively denote the target and covariate matrix for the i-th data owner. Therefore, the
covariates and target matrices are obtained by joining the individual matrices column-wise, i.e.,
Z = [ZA1

, . . . ,ZAn
] and Y = [YA1

, . . . ,YAn
]. For distributed computation, the coefficient matrix of

data owner i is denoted by BAi
∈ Rp×n, i = 1, . . . , n.

III.3.2 Estimation in VAR Models

Commonly, when the number of covariates included, np, is substantially smaller than the length
of the time series, T , the VAR model can be fitted using multivariate least squares solution, given
by

B̂LS = argmin
B

(
∥Y − ZB∥22

)
, (62)

where ∥.∥r represents both vector and matrix Lr norms. However, in collaborative forecasting,
as the number of data owners increases, as well as the number of lags, it becomes crucial
to use regularization techniques such as LASSO to introduce sparsity into the coefficient matrix
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estimated by the model. In the standard LASSO-VAR approach (see Nicholson et al. (2017) for
different variants of the LASSO regularization in the VAR model), the coefficients are given by

B̂ = argmin
B

(
1

2
∥Y − ZB∥22 + λ∥B∥1

)
, (63)

where λ > 0 is a scalar penalty parameter.

With the addition of the LASSO regularization term, the convex objective function in (63) be-
comes non-differentiable, limiting the variety of optimization techniques that can be employed.
In this domain, the ADMM (which was described in Section III.2.3.1) is a widespread and com-
putationally efficient technique that enables parallel estimations for data divided by features.
The ADMM formulation of the non-differentiable cost function associated to LASSO-VAR model
in (63) solves the following optimization problem:

min
B,H

(1
2
∥Y − ZB∥22 + λ∥H∥1

)
subject to H = B , (64)

which differs from (63) by splitting B into two parts (B and H). Thus, the objective function can be
split in two distinct objective functions, f(B) = 1

2∥Y − ZB∥22 and g(H) = λ∥H∥1. The augmented
Lagrangian (Boyd et al., 2011) of this problem is

Lρ(B,H,W) =
1

2
∥Y − ZB∥22 + λ∥H∥1 +W⊤(B−H) +

ρ

2
∥B−H∥22 , (65)

where W is the dual variable and ρ > 0 is the penalty parameter. The scaled form of this La-
grangian is

Lρ(B,H,U) =
1

2
∥Y − ZB∥22 + λ∥H∥1 +

ρ

2
∥B−H+U∥2 − ρ

2
∥U∥2 , (66)

where U = (1/ρ)W is the scaled dual variable associated with the constrain B = H. Hence,
according to (52), the ADMM formulation for LASSO-VAR consists in the following iterations (Cav-
alcante et al., 2017a):

Bk+1 := argmin
B

(1
2
∥Y − ZB∥22 +

ρ

2
∥B−Hk +Uk∥22

)
Hk+1 := argmin

H

(
λ∥H∥1 +

ρ

2
∥Bk+1 −H+Uk∥22

)
Uk+1 := Uk +Bk+1 −Hk+1.

(67)

Concerning the LASSO-VAR model, and since data are naturally divided by features (i.e., Y =
[YA1

, . . . ,YAn
], Z = [ZA1

, . . . ,ZAn
] and B = [B⊤

A1
, . . . ,B⊤

An
]⊤) and the functions ∥Y − ZB∥22 and

∥B∥1 are decomposable (i.e., ∥Y − ZB∥22 = ∥Y −
∑n

i=1 ZAi
BAi

∥22 and ∥B∥1 =
∑n

i=1 ∥BAi
∥1), the

model fitting problem (63) becomes the following:

argmin
Γ

(
1

2
∥Y −

n∑
i=1

ZAi
BAi

∥22 + λ

n∑
i=1

∥BAi
∥1

)
, (68)

Γ = {BA1 , . . . ,BAn}, which is rewritten as

argmin
Γ′

(
1

2
∥Y −

n∑
i=1

HAi∥22 + λ

n∑
i=1

∥BAi∥1

)
s.t. BA1ZA1 = HA1 , . . . , BAnZAn = HAn , (69)

Γ′ = {BA1 , . . . ,BAn ,HA1 , . . . ,HAn}, while the corresponding distributed ADMM formulation (Boyd
et al., 2011; Cavalcante et al., 2017a) is the one presented in the system of equations (70),

Bk+1
Ai

= argmin
BAi

(ρ
2
∥ZAiB

k
Ai

+H
k − ZB

k −Uk − ZAiBAi∥22 + λ∥BAi∥1
)
, (70a)
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Figure 19 Transpose of the coefficient matrix used to generate the VAR with 10 data owners and 3 lags.

H
k+1

=
1

N + ρ

(
Y + ρZB

k+1
+ ρUk

)
, (70b)

Uk+1 = Uk + ZB
k+1 −H

k+1
, (70c)

where ZB
k+1

= 1
n

∑n
j=1 ZAj

Bk+1
Aj

and Bk+1
Ai

∈ Rp×n, ZAi
∈ RT×p,Y ∈ RT×n, H

k
,U ∈ RT×n, i =

1, ..., n.

Although parallel computation is an appealing property for the design of a privacy-preserving
approach, the ADMM is an iterative optimization process that requires intermediate calcula-
tions. Thus, careful analysis is needed to determine whether a confidentiality breach will occur
after enough iterations.

III.3.3 Privacy Analysis

III.3.3.1 Data Transformation with Noise Addition This section presents experiments with simu-
lated data and solar energy data collected from a smart grid pilot in Portugal. The objective
was to quantify the impact of data distortion (through noise addition) on the model forecasting
skill.

a) Synthetic Data: An experiment was performed to add random noise from a Gaussian distribu-
tion with zero mean and variance b2, a Laplace distribution with zero mean and scale parameter
b and a uniform distribution with support [−b, b] – represented by N (0, b2), L(0, b) and U(−b, b), re-
spectively. Synthetic data generated by VAR processes were used to measure the differences
between the coefficients’ values when adding noise to the data. The simplest case considered
a VAR with two data owners and two lags, described by

(
y1,t y2,t

)
=

(
y1,t−1 y2,t−1 y1,t−2 y2,t−2

)


0.5 0.3

0.3 0.75

−0.3 −0.05

−0.1 −0.4


+

(
ε1,t ε2,t

)
.

The second case included ten data owners and three lags and introduced a high percentage
of null coefficients (≈ 86%). Figure 19 illustrates the considered coefficients. Since a specific
configuration can generate various distinct trajectories, 100 simulations were performed for each
specified VAR model, with 20,000 timestamps each. For both simulated datasets, the errors

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

44



D4.1 Distributed and Collaborative Forecasting

● ●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

Original data

U(0,0.2)

N(0,0.2)

L(0,0.2)

U(0,0.6)

N(0,0.6)

L(0,0.6)

C
oe

ffi
ci

en
ts

 A
bs

ol
ut

e 
D

iff
er

en
ce VAR with 2 onwers

● ●
●

●

●

●

●

−0.05

0.00

0.05

0.10

Original data

U(0,0.2)

N(0,0.2)

L(0,0.2)

U(0,0.6)

N(0,0.6)

L(0,0.6)

VAR with 10 onwers

Figure 20 Mean ± standard deviation for the absolute difference between the real and estimated coeffi-
cients (left: VAR with 2 data owners, right: VAR with 10 data owners).

εt were assumed to follow a multivariate normal distribution with a zero mean vector and a
covariance matrix equal to the identity matrix of appropriate dimensions. A distributed ADMM
(detailed in Section III.2.3.1) was used to estimate the LASSO-VAR coefficients, considering two
different noise characterizations, b ∈ {0.2, 0.6}.

Figure 20 summarizes the mean and the standard deviation of the absolute difference between
the real and estimated coefficients for both VAR processes from the 100 simulations. The greater
the noise b, the greater the distortion of the estimated coefficients. Moreover, the Laplace distri-
bution, which has desirable properties to make data private according to a differential privacy
framework, registered the greater distortion in the estimated model.

Using the original data, the ADMM solution tended to stabilize after 50 iterations, and the value of
the coefficients was correctly estimated (the difference was approximately zero). The distorted
time series converged faster, but the coefficients deviated from the real ones. In fact, adding
noise contributed to decreasing the absolute value of the coefficients. That is, the relationships
between the time series weakened.

These experiments allow us to draw conclusions about the use of differential privacy. The Laplace
distribution has advantageous properties, since it ensures ε-differential privacy when random
noise follows L(0, ∆f1

ε ). For the VAR with two data owners, ∆f1 ≈ 12, since the observed values
are in the interval [−6, 6]. Therefore, ε = 20 when L(0, 0.6) and ε = 15 when L(0, 0.8), meaning
that the data still encompass much relevant information. Finally, we verified the impact of noise
addition on fore- casting performance. Figure 21 illustrates the improvement of each estimated
VAR2(2) model (with and without noise addition) over the autoregressive (AR) model estimated
with original time series, in which collaboration is not used. This improvement was measured in
terms of the mean absolute error (MAE) and root mean squared error (RMSE). In the case of ten
data owners and when using data without noise, seven data owners improved their forecasting
performance, which was expected from the coefficient matrix in Figure 19. When Laplacian
noise was applied to the data, only one data owner (the first one) improved its forecasting
skill (when compared to the AR model) by using the estimated VAR model. Even though the
masked data continued to provide relevant information, the model obtained for the Laplacian
noise performed worse than the AR model for the second data owner, making the VAR useless
for the majority of the data owners.

However, these results cannot be generalized for all VAR models, especially regarding the il-
lustrated VAR10(3), which is very close to the AR(3) model. Given that, we conducted a third
experiment, in which 200 random coefficient matrices were generated for a stationary VAR2(2)
and VAR10(3) following the algorithm proposed by Ansley and Kohn (1986). Usually, the gener-
ated coefficient matrix has no null entries and the higher values are not necessarily found on
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Figure 21 Improvement (%) of VAR2(2) model over AR(2) model, in terms of MAE and RMSE for synthetic
data.
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Figure 22 Improvement (%) of VAR model over AR model, in terms of MAE and RMSE for synthetic data.

diagonals. Figure 22 illustrates the improvement for each data owner when using a VAR model
(with and without noise addition) over the AR model. In this case, the percentage of times
the AR model performed better than the VAR model with distorted data was smaller, but the
degradation of the models was still noticeable, especially in the case with ten data owners.

b) Real Data: We also used a real dataset comprising hourly time series of solar power gener-
ation from 44 micro-generation units located in Évora city (Portugal), covering the period from
February 1, 2011 to March 6, 2013. As in Cavalcante and Bessa (2017), records corresponding
to a solar zenith angle higher than 90◦ were removed, in order to take off nighttime hours (i.e.,
hours without any generation). To make the time series station- ary, a normalization of the solar
power was applied by using a clear-sky model (see Bacher et al. (2009)) that gives an estimate
of solar power under clear sky conditions at any given time. The power generation for the next
hour was modeled through the VAR model, which combined data from the 44 data owners and
considered three non-consecutive lags (1 h, 2 h, and 24 h). Figure 23 (a) summarizes the im-
provement for the 44 solar power plants over the autoregressive model, in terms of the MAE and
RMSE. The quartile 25% shows that the MAE improved by at least 10% for 33 of the 44 solar power
plants, when the data owners share their observed data. The improvement to the RMSE was not
as significant, but is still greater than zero. Although the data obtained after adding Laplacian
noise retained its temporal dependency, as illustrated in Figure 23 (b), the corresponding VAR
model was useless for 4 of the 44 data owners. When considering the RMSE, 2 of the 44 data
owners obtain better results by using an autoregressive model. Once again, the resulting model
suffers a significant reduction in terms of forecasting capability.

III.3.3.2 Linear Algebra-based Protocols Let us consider a case with two data owners. Since
the multivariate least squares estimate for the VAR model with covariates Z = [ZA1 ,ZA2 ] and
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Figure 23 Results for real case-study with solar power time series.

target Y = [YA1
,YA2

] is

B̂LS =


 Z⊤

A1

Z⊤
A2

 [ZA1
,ZA2

]


−1

 Z⊤
A1

Z⊤
A2

 [YA1
,YA2

]

 (71)

=

 Z⊤
A1

ZA1 Z⊤
A1

ZA2

Z⊤
A2

ZA1 Z⊤
A2

ZA2


−1 Z⊤

A1
YA1 Z⊤

A1
YA2

Z⊤
A2

YA1 Z⊤
A2

YA2

 , (72)

the data owners need to jointly compute Z⊤
A1

ZA2 , Z⊤
A1

YA2 and Z⊤
A2

YA1 .

As mentioned in the introduction of Section III.2.2.1, the work of Du et al. (2004b) proposed
protocols for secure matrix multiplication for situations where two data owners observe the same
common target matrix and different confidential covariates. Unfortunately, without assuming a
trusted third entity for generating random matrices, the proposed protocol fails when applied to
the VAR model. This is because 2(T − 1)p values of the covariate matrix Z ∈ RT×2p are included
in the target matrix Y ∈ RT×2, which is also undisclosed. Additionally, ZAi

∈ RT×p has T + p − 1
unique values instead of Tp – regarding which, see Figure 18.

Proposition 1 Consider a case in which two data owners with private data ZAi
∈ RT×p and

YAi
∈ RT×1, want to estimate a VAR model without trusting a third entity, i = 1, 2. Assume that the

T records are consecutive, as well as the p lags. The multivariate least squares estimate for the
VAR model with covariates Z = [ZA1 ,ZA2 ] and target Y = [YA1 ,YA2 ] requires the computation
of Z⊤

A1
ZA2 , Z⊤

A1
YA2 and Z⊤

A2
YA1 .

If data owners use the protocol proposed by Du et al. (2004b) for computing such matrices, then
the information exchanged allows to recover data matrices.

Proof As in Du et al. (2004b), let us consider a case with two data owners without a third entity
generating random matrices.

In order to compute Z⊤
A1

ZA2
both data owners define a matrix M ∈ RT×T and compute its
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inverse M−1. Then, the protocol stipulates that

Z⊤
A1

ZA2
= Z⊤

A1
MM−1ZA2

= A[Mleft,Mright]

 (M−1)top

(M−1)bottom

ZA2

= Z⊤
A1

Mleft(M
−1)topZA2︸ ︷︷ ︸

derived by Owner #1

+Z⊤
A1

Mright(M
−1)bottomZA2︸ ︷︷ ︸

derived by Owner #2

,

requiring the data owners to share Z⊤
A1

Mright ∈ Rp×T/2 and (M−1)topZA2
∈ RT/2×p, respectively.

This implies that each data owner shares pT/2 values.

Similarly, the computation of Z⊤
A1

YA2
implies that the data owners define a matrix M∗, and share

Z⊤
A1

M∗
right ∈ Rp×T/2 and (M∗−1)topYA2

∈ RT/2×p, respectively, providing new pT/2 values. This
means that Owner #2 receives Z⊤

A1
Mright and Z⊤

A1
M∗

right, i.e., Tp values, and may recover ZA1
,

which consists of Tp values and represents a confidentiality breach. Furthermore, when con-
sidering a VAR model with p lags, ZA1 has T + p − 1 unique values, meaning there are fewer
values to recover. Analogously, Owner #1 may recover ZA2

through the matrices shared for the
computation of Z⊤

A1
ZA2

and Z⊤
A2

YA1
.

Finally, when considering a VAR with p lags, YAi
only has p values that are not in ZAi

. While
computing Z⊤

A1
YA2

, Owner #1 receives T/2 values from (M∗−1)topYA2
∈ RT/2×1, such that a

confidentiality breach can occur (in general T/2 > p). In the same way, Owner #2 recovers YA1

when computing Z⊤
A2

YA1 . □

The main disadvantage of linear algebra-based methods is that they do not take into account
that, in the VAR model, both target variables and covariates are private, and that a large pro-
portion of the covariates matrix is determined by knowing the target variables. This means that
the data shared between data owners may be enough for competitors to be able to recon-
struct the original data. For the method proposed by Karr et al. (2009), a consequence of such
data is that the assumption rank

(
(I−WW⊤)C

)
= m−g may still provide a sufficient number of

linearly independent equations on the other data owner’s data to recovering the latter’s data.

III.3.3.3 ADMM Method and Central Node Zhang and Wang (2018b) offered a promising ap-
proach to dealing with the problem of private data during the ADMM iterative process de-
scribed by (70). According to their approach, for each iteration k, each data owner i com-
municates local results, ZAi

Bk+1
Ai

, to the central node, ZAi
∈ RT×p,Bk+1

Ai
∈ Rp×n, i = 1, . . . , n.

Then, the central node computes the intermediate matrices in (70b)-(70c) and returns the ma-
trix H

k − ZB
k − Uk to each data owner, in order to update BAi

in the next iteration, as seen
in (70a). Figure 24 illustrates this method for the LASSO-VAR with three data owners. In this solu-
tion, there is no direct exchange of private data. However, as we explain next, not only can the
central node recover the original data, but also the individual data owners can obtain a good
estimation of the data used by their competitors.

Proposition 2 In the most optimistic scenario, without repeated values in YAi
∈ RT×1 and ZAi

∈
RT×p, when applying the algorithm from Zhang et al. (2019) to solve the LASSO-VAR model
in (70), the central agent can recover the sensible data after

k =

⌈
Tp

Tn− pn

⌉
(73)

iterations, where ⌈x⌉ denotes the ceiling function.
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Figure 24 Distributed ADMM LASSO-VAR with a central node and 3 data owners (related to the algorithm
in (70)).

Proof Using the notation of Section III.3.1, each of the n data owners is assumed to use the
same number of lags p to fit a LASSO-VAR model with a total number of T records. (Impor-
tantly, T > np; otherwise more coefficients must be determined than system equations.) After
k iterations, the central node receives a total of Tnk values from each data owner i, corre-
sponding to ZAi

B1
Ai
,ZAi

B2
Ai
, ...,ZAi

Bk
Ai
∈ RT×n, and does not know pnk + Tp, corresponding to

B1
Ai
, ...,Bk

Ai
∈ Rp×n and ZAi

∈ RT×p, respectively, i = 1, ..., n. Given that, the solution of the inequal-
ity

Tnk ≥ pnk + Tp , (74)

in k suggests that a confidentiality breach can occur after

k =

⌈
Tp

Tn− pn

⌉
(75)

iterations. Since T tends to be large, k tends to ⌈p/n⌉, which may represent a confidentiality
breach if the number of iterations required for the algorithm to converge is greater than ⌈p/n⌉.

□

Proposition 3 In the most optimistic scenario, without repeated values in YAi
∈ RT×1 and ZAi

∈
RT×p, when applying the algorithm from Zhang et al. (2019) to solve the LASSO-VAR model
in (70), the data owners can recover sensible data from competitors after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(76)

iterations.

Proof Without loss of generality, Owner #1 is considered a semi-trusted data owner. (A semi-
trusted data owner completes and shares his/her computations faithfully, but tries to learn addi-
tional information while or after the algorithm runs.) For each iteration k, this data owner receives
the intermediate matrix H

k − ZB
k︸︷︷︸

= 1
n

∑n
i=1 ZAi

Bk
Ai

−Uk∈ RT×n, which provides Tn values. However,

Owner #1 does not know

−Uk +H
k︸ ︷︷ ︸

∈RT×n

, Bk
A2

, . . . ,Bk
An︸ ︷︷ ︸

n − 1 matrices ∈ Rp×n

, ZA2 , . . . ,ZAn︸ ︷︷ ︸
n − 1 matrices ∈ RT×p

, YA2 , . . . ,YAn︸ ︷︷ ︸
n − 1 matrices ∈ RT×1

,

which corresponds to Tn+(n−1)pn+(n−1)Tp+(n−1)T values. Nevertheless, since all the data
owners know that H

k
and Uk are defined by the expressions in (70b) and (70c), it is possible to

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

49



D4.1 Distributed and Collaborative Forecasting

perform some simplifications in which Uk and H
k−ZB

k−Uk becomes (77) and (78), respectively:

Uk (70c)
= Uk−1 + ZB

k −H
k
= Uk−1 + ZB

k − 1

N + ρ

(
Y + ρZB

k
+ ρUk−1

)
︸ ︷︷ ︸

= H
k , according to (70b)

=
[
1− ρ

N + ρ

]
Uk−1 +

[
1− ρ

N + ρ

]
ZB

k − 1

N + ρ
Y ,

(77)

H
k−ZB

k−Uk=
1

N + ρ

(
Y + ρZB

k
+ ρUk−1

)
︸ ︷︷ ︸

=Hk , according to (70b)

−ZB
k −Uk.

(78)

Therefore, the iterative process of finding the competitors’ data proceeds as follows:

1. Initialization: The central node generates U0 ∈ RT×n, and the i-th data owner generates
B1

Ai
∈ Rp×n, i ∈ {1, ..., n}.

2. Iteration #1: The central node receives ZAi
B1

Ai
and computes U1, returning H

1−ZB
1−U1 ∈

RT×n which is returned for all n data owners. At this point, Owner #1 receives Tn values and
does not know

U0︸︷︷︸
∈RT×n

, B1
A2

, ...,B1
An︸ ︷︷ ︸

n − 1 matrices ∈ Rp×n

, ZA2
, ...,ZAn︸ ︷︷ ︸

n − 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+ (n− 1)[pn+ Tp+ T ] values.

3. Iteration #2: The central node receives ZAi
B2

Ai
and computes U2, returning H

2 − ZB
2 −U2

for the n data owners. At this point, only new estimations for the matrices BA2 , ...,BAn were
introduced in the system, which means more (n−1)pn values must be estimate.

As a result, after k iterations, Owner #1 has received ZAi
B1

Ai
, . . . ,ZAi

Bk
Ai

∈ RT×n corresponding
to Tnk values and needs to estimate

U0︸︷︷︸
∈RT×n

,B1
A2

, ...,B1
An

,B2
A2

, ...,B2
An

, . . . ,Bk
A2

, ...,Bk
An︸ ︷︷ ︸

(n − 1)k matrices ∈ Rp×n

, ZA2
, ...,ZAn︸ ︷︷ ︸

n − 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+(n−1)[kpn+Tp+T ]. Then, the solution for
the inequality

Tnk ≥ Tn+ (n− 1)[kpn+ Tp+ T ] , (79)

suggests that a confidentiality breach may occur after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(80)

iterations. □

Figure 25 illustrates the k value for different combinations of T , n, and p. In general, the greater
the number of records T , the smaller the number of iterations necessary for a confidentiality
breach. This is because more information is shared during each iteration of the ADMM algorithm.
By contrast, the number of iterations before a possible confidentiality breach increases with the
number of data owners (n). The same is true for the number of lags (p).
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Figure 25 Number of iterations until a possible confidentiality breach, considering the centralized ADMM-
based algorithm in (Zhang et al., 2019).

III.3.3.4 ADMM Method and Noise Mechanisms The target matrix Y = [YA1
, . . . ,YAn

] corre-
sponds to the sum of private matrices IYAi

∈ RT×n. That is,

y1,t y2,t . . . yn,t

y1,t+1 y2,t+1 . . . yn,t+1

y1,t+2 y2,t+2 . . . yn,t+2

...
. . .

...

y1,t+h y2,t+h . . . yn,t+h


︸ ︷︷ ︸

Y

=



y1,t 0 . . . 0

y1,t+1 0 . . . 0

y1,t+2 0 . . . 0
...

. . .
...

y1,t+h 0 . . . 0


︸ ︷︷ ︸

IYA1

+



0 y2,t . . . 0

0 y1,t+1 . . . 0

0 y1,t+2 . . . 0
...

. . .
...

0 y1,t+h . . . 0


︸ ︷︷ ︸

IYA2

+ · · ·+



0 0 . . . yn,t

0 0 . . . yn,t+1

0 0 . . . yn,t+2

...
. . .

...

0 0 . . . yn,t+h


︸ ︷︷ ︸

IYAn

, (81)

where [IYAi
]i,j=[Y]i,j in cases where the entry (i, j) of Y is from i-th data owner and [IYAi

]i,j=0
otherwise.

Since the LASSO-VAR ADMM formulation is provided by (70), at iteration k, the data owners
receive the intermediate matrix H

k−ZB
k−Uk and then update their local solution through (70a).

The combination of (77) with (81) can be used to rewrite Uk as

Uk =
[
1− ρ

N + ρ

]
Uk−1 +

n∑
i=1

[
1− ρ

N + ρ

] 1
n
ZAiB

k
Ai

− 1

N + ρ
IYAi︸ ︷︷ ︸

information from owner i

, (82)

and, similarly, H
k − ZB

k
can be rewritten as

H
k − ZB

k
=

1

N + ρ
Y +

[ ρ

N + ρ
− 1
]
ZB

k
+

ρ

N + ρ
Uk−1 −Uk

=

n∑
i=1

( 1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1
n
ZAiB

k
Ai

)
︸ ︷︷ ︸

information from owner i

+
ρ

N + ρ
Uk−1 −Uk ,

(83)
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where

Y =

n∑
i=1

IYAi
, (84)

ZB
k+1

=

n∑
i=1

ρ

n
ZAi

Bk+1
Ai

. (85)

By analyzing (82) and (83), it is possible to verify that data owner i only needs to share

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1
n
ZAiB

k
Ai
, (86)

for the computation of H
k − ZB

k −Uk.

Let W1,Ai
∈ RT×n, W2,Ai

∈ RT×p, W3,Ai
∈ Rp×n, W4,Ai

∈ RT×n, represent noise matrices gen-
erated according to the differential privacy framework. The noise mechanism could be intro-
duced by

(i) adding noise to the data itself, i.e., replacing IYAi
and ZAi by

IYAi
+W1,Ai

and ZAi
+W2,Ai

, (87)

(ii) adding noise to the estimated coefficients, i.e., replacing Bk
Ai

by

Bk
Ai

+W3,Ai , (88)

(iii) adding noise to the intermediate matrix (86),

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1
n
ZAi

Bk
Ai

+W4,Ai
. (89)

The addition of noise to the data itself (87) was empirically analyzed in Section III.3.3.1. As we
showed, confidentiality comes at the cost of deteriorating model accuracy. The question is
whether adding noise to the coefficients or intermediate matrix can ensure that data are not
recovered after a number of iterations.

Proposition 4 Consider noise addition in an ADMM-based framework by

(i) adding noise to the coefficients, as described in (88);

(ii) adding noise to the exchanged intermediate matrix, as described in (89).

In both cases, a semi-trusted data owner can recover the data after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
(90)

iterations.

Proof These statements are promptly deduced from the Proof presented for Proposition 3. With-
out loss of generality, Owner #1 is considered the semi-trusted data owner.
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(i) Owner #1 can estimate BAi
, without distinguishing between BAi

and W3,Ai
in (88), by re-

covering IYAi
and ZAi

. Let B′
Ai

= BAi
+W3,Ai

and H′k, U′k be the matrices H
k
, Uk replac-

ing BAi
by B′

Ai
. Then, at iteration k Owner #1 receives H′k − ZB′k −U′k ∈ RT×n (Tn values)

and does not know

H′k −U′k︸ ︷︷ ︸
∈RT×n

, B′k
A2

, . . . ,B′k
An︸ ︷︷ ︸

n − 1 matrices ∈ Rp×n

, ZA2 , . . . ,ZAn︸ ︷︷ ︸
n − 1 matrices ∈ RT×p

, YA2 , . . . ,YAn︸ ︷︷ ︸
n − 1 matrices ∈ RT×1

,

which corresponds to Tn + (n − 1)pn + (n − 1)Tp + (n − 1)T values. As in Proposition 3, this
means that, after k iterations, Owner #1 has received Tnk values and needs to estimate

U′0︸︷︷︸
∈RT×n

,B′1
A2

, ...,B′1
An

,B′2
A2

, ...,B′2
An

, . . . ,B′k
A2

, ...,B′k
An︸ ︷︷ ︸

(n − 1)k matrices ∈ Rp×n

, ZA2
, ...,ZAn︸ ︷︷ ︸

n − 1 matrices ∈ RT×p

,

and n−1 columns of Y ∈ RT×n, corresponding to Tn+(n−1)[kpn+Tp+T ]. Then, the solution
for the inequality Tnk ≥ Tn + (n − 1)[kpn + Tp + T ] suggests that a confidentiality breach
may occur after

k =

⌈
Tn+ (n− 1)(Tp+ T )

Tn− (n− 1)pn

⌉
iterations.

(ii) Since Owner #1 can estimate BAi
by recovering data, adding noise to the intermediate

matrix reduces to the case of adding noise to the coefficients, in (i), because Owner #1
can rewrite (89) as

1

N + ρ
IYAi

+
[ ρ

N + ρ
− 1
] 1
n
ZAi

[
Bk

Ai
+
[ ρ

N + ρ
− 1
]−1

Z−1
Ai

W4,Ai︸ ︷︷ ︸
=B′

Ai

]
. (91)

□

III.4 Discussion

Table 9 summarizes the methods from the literature. These privacy-preserving algorithms ought
to be carefully constructed, and two key components should be considered: (i) how data are
distributed between data owners, and (ii) the statistical model used. Decomposition-based
methods are very sensitive to data partitioning, while data transformation and cryptography-
based methods are very sensitive to the problem structure. Differential privacy methods are
notable exceptions, as they simply add random noise, from specific probability distributions, di-
rectly to the data. This property makes these methods appealing, but differential privacy usually
involves a trade-off between accuracy and privacy.

Cryptography-based methods are usually more robust to confidentiality breaches, but they
have some disadvantages: (i) some of them require a third-party to generate keys, as well as
external entities to perform the computations in the encrypted domain; and (ii) there are chal-
lenges to the scalability and implementation efficiency, mostly due to the high computational
complexity and overhead of existing homomorphic encryption schemes (Hoogh, 2012; Zhao
et al., 2019; Tran and Hu, 2019). Regarding some protocols, such as secure multiparty computa-
tion through homomorphic cryptography, communication complexity grows exponentially with
the number of records (Rathore et al., 2015).

Data transformation methods do not affect the computational time for training the model,
since data owners transform their data before the model fitting process. The same is true of
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Table 9 Summary of state-of-the-art privacy-preserving approaches.

Split by features Split by records

Data Transformation Mangasarian (2011) Mangasarian (2012), Yu
et al. (2008), Dwork et al.
(2014b)

Secure Multi-party
Computation

Linear
Algebra

Du et al. (2004b), Karr et al.
(2009), Zhu et al. (2015),
Fan and Xiong (2014)*,
Soria-Comas et al. (2017)

Zhu et al. (2015), Aono
et al. (2017)

Homomorphic-
cryptography

Yang et al. (2019), Hall
et al. (2011), Gascón et al.
(2017), Slavkovic et al.
(2007)

Yang et al. (2019), Hall
et al. (2011), Nikolaenko
et al. (2013), Chen et al.
(2018), Jia et al. (2018),
Slavkovic et al. (2007)

Decomposition-based
Methods

Pure Pinson (2016b), Zhang and
Wang (2018b)

Wu et al. (2012), Lu et al.
(2015), Ahmadi et al.
(2010), Mateos et al.
(2010a)

Linear
Algebra

Li et al. (2015b), Han et al.
(2010)

Zhang and Zhu (2017),
Huang et al. (2019), Zhang
et al. (2018)

Homomorphic-
cryptography

Yang et al. (2019), Li and
Cao (2012)*, Liu et al.
(2018b)*, Li et al. (2018)*,
Fienberg et al. (2009), Mo-
hassel and Zhang (2017)

Yang et al. (2019), Zhang
et al. (2019), Fienberg
et al. (2009), Mohassel and
Zhang (2017)

* secure data aggregation.

decomposition-based methods, in which data are split by data owners. Secure multi-party pro-
tocols have the disadvantage of transforming the information while fitting the statistical model,
which implies a higher computational cost.

As mentioned above, the main challenge to the application of existing privacy-preserving al-
gorithms in the VAR model is the fact that Y and Z share a high percentage of values, not only
during the fitting of the statistical model but also when using it to perform forecasts. A confi-
dentiality breach can occur during the forecasting process if, after the model is estimated, the
algorithm to maintain privacy provides the coefficient matrix B for all data owners. When using
the estimated model to perform forecasts, we assume that each i-th data owner sends its own
contribution for time series forecasting to every other j-th data owner:

1. In the LASSO-VAR models with one lag, since i-th data owner sends yi,t[B
(1)]i,j for the j-th

data owner, the value yi,t may be directly recovered when the coefficient [B(1)]i,j is known
by all data owners, being [B(1)]i,j the coefficient associated with lag 1 of time series i, to
estimate j.

2. In the LASSO-VAR models with p consecutive lags, the forecasting a new timestamp only
requires the introduction of one new value in the covariate matrix of the i-th data owner.
In other words, after h timestamps, the j-th data owner receives the h values. However,
there are h + p values that the data owner does not know about. This may represent a
confidentiality breach, since a semi-trusted data owner can assume different possibilities
for the initial p values and then generate possible trajectories.
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3. In the LASSO-VAR models with p non-consecutive lags, p1, . . . , pp, after pp−pp−1 timestamps,
only one new value is introduced in the covariate matrix, meaning that the model is also
subject to a confidentiality breach.

Therefore, and considering the issue of data naturally split by features, it would be more ad-
vantageous to apply decomposition-based methods, since the time required for model fitting is
unaffected by data transformations and data owners only have access to their own coefficients.
However, with state-of-the-art approaches, it is difficult to guarantee that these techniques can
indeed offer a robust solution to data privacy when addressing data split by features.

Finally, we offer a remark on specific business applications of VAR, where data owners know
some exact past values of competitors. For example, consider a VAR model with lags ∆t = 1, 2
and 24, which predicts the production of solar plants. When forecasting the first sunlight hour of a
day, all data owners will know that the previous lags 1 and 2 have zero production (no sunlight).
Irrespective of whether the coefficients are shared, a confidentiality breach may occur. In these
special cases, the estimated coefficients cannot be used for a long time horizon, and online
learning may represent an efficient alternative.

The privacy issues analyzed in this section are not restricted to the VAR model, nor to point fore-
casting tasks. Probabilistic forecasts, using data from different data owners (or geographical lo-
cations), can be generated with splines quantile regression (Tastu et al., 2012), component-wise
gradient boosting (Bessa et al., 2015c), a VAR that estimates the location parameter (mean)
of data transformed by a logit-normal distribution (Dowell and Pinson, 2015), linear quantile re-
gression with LASSO regularization (Agoua et al., 2018), and others. These are some examples of
collaborative probabilistic forecasting methods. However, none of them considers the confiden-
tiality of data. Moreover, the method proposed by Dowell and Pinson (2015) can be influenced
by the confidentiality breaches discussed throughout this section, since the VAR model is directly
used to estimate the mean of transformed data from different data owners. By contrast, when
performing non-parametric models such as quantile regression, each quantile is estimated by
solving an independent optimization problem, which means that the risk of a confidentiality
breach increases with the number of quantiles being estimated. (Note that quantile regression-
based models may be solved through the ADMM (Zhang et al., 2019). However, as discussed
in Section III.2.3, a semi-trusted agent can collect enough information to infer the confidential
data. The quantile regression method may also be estimated by applying linear programming
algorithms (Agoua et al., 2018), which may be solved through homomorphic encryption, despite
being computationally demanding for high-dimensional multivariate time series.

III.5 Concluding Remarks

This section presented a critical overview of techniques used to handle privacy issues in collab-
orative forecasting methods. In addition, we analyzed their application to the VAR model. The
techniques were divided into three groups of approaches: data transformation, secure multi-
party computation, and decomposition of the optimization problem into sub-problems.

For each group, several points can be concluded. Starting with data transformation techniques,
two remarks were made. The first concerns the addition of random noise to the data. While
the algorithm is simple to apply, this technique demands a trade-off between privacy and the
correct estimation of the model’s parameters (Yang et al., 2019). In our experiments, there
was clear model degradation even though the data continued to provide relevant information
(Section III.3.3.1). The second relates to the multiplication by an undisclosed random matrix.
Ideally, and in what concerns data where different data owners observe different variables, this
secret matrix would post-multiply data, thus enabling each data owner to generate a few lines
of this matrix. However, as demonstrated in (33) in Section III.2.1.2, this transformation does not

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

55



D4.1 Distributed and Collaborative Forecasting

preserve the estimated coefficients, and the reconstruction of the original model may require
sharing the matrices used to encrypt the data, thus exposing the original data.

The second group of techniques, secure multi-party computation, introduce privacy to the in-
termediate computations by defining the protocols for addition and multiplication of the private
datasets. Confidentiality breaches are avoided by using either linear algebra or homomorphic
encryption methods. For independent records, data confidentiality is guaranteed for (ridge)
linear regression through linear algebra-based protocols; not only do records need to be inde-
pendent, but some also require that the target variable is known by all data owners. These
assumptions might prevent their application when covariates and target matrices share a large
proportion of values–in the case of the VAR model, for instance. This means that data shared
between agents might be enough for competitors to be able to reconstruct the data. Ho-
momorphic cryptography methods can result in computationally demanding techniques, since
each dataset value must be encrypted. The protocols we discussed preserve privacy while using
(ridge) linear regression, provided that there are two entities that correctly perform the protocol
without agent collusion. These entities are an external server (e.g., a cloud server) and an entity
that generates the encryption keys. In some approaches, all data owners know the coefficient
matrix B after model estimation. This is a disadvantage when applying models in which covari-
ates include the lags of the target variable, because confidentiality breaches can occur during
the forecasting phase.

Finally, decomposition of the optimization problem into sub-problems (which can be solved in
parallel) have all the desired properties of a collaborative forecasting problem, since data own-
ers only estimate their own coefficients. A common assumption of such methods is that the
objective function is decomposable. However, these approaches consist of iterative processes
that require sharing intermediate results for the next update, meaning that each new iteration
conveys more information about the secret datasets to the data owners, with the possibly of
breaching data confidentiality.

IV. Federated learning for renewable energy fore-
casting

IV.1 Introduction

The forecast skill of RES has improved over the past two decades through R&D activities across
the complete model chain, i.e., from NWP to statistical learning methods that convert weather
variables into power forecasts (Sweeney et al., 2020a). The need to bring forecast skill to sig-
nificantly higher levels is widely recognized in the majority of roadmaps that deal with high RES
integration scenarios for the next decades. This is expected not only to facilitate RES integration
in the system operation and electricity markets but also to reduce the need for flexibility and
associated investment costs on remedies that aim to hedge RES variability and uncertainty like
storage, demand response, and others.

In this context, intraday and hour-ahead electricity markets are becoming increasingly impor-
tant to handle RES uncertainty and thus accurate hours-ahead forecasts are essential. Recent
findings showed that feature engineering, combined with statistical models, can extract rel-
evant information from spatially distributed weather and RES power time series and improve
hours-ahead forecast skill (Sweeney et al., 2020a). Indeed, for very short-term lead times (from
15 minutes to 6 hours ahead), the VAR model, when compared to univariate time series models,
has shown competitive results for wind (Tastu et al., 2014) and solar (Bessa et al., 2015b) power
forecasting. Alternative models are also being applied to this problem, most notably deep learn-
ing techniques such as convolutional neural networks or long short-term memory networks (Zhu
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et al., 2020). While there may always be a debate about the interest and relevance of statisti-
cal modeling vs. machine learning approaches, VAR models have the advantages of flexibility,
interpretability, acceptability by practitioners, as well as robustness in terms of forecast skill.

Five important challenges for RES forecasting have been identified when using VAR: (a) sparse
structure of the coefficients’ matrix (Zhao et al., 2018), (b) uncertainty forecasting (Dowell and
Pinson, 2015), (c) distributed learning (Cavalcante et al., 2017b), (d) online learning (Messner
and Pinson, 2019), and (e) data privacy.

Data privacy is a critical barrier to the application of collaborative forecasting models. Although
multivariate time series models offer forecast skill improvement, the lack of privacy-preserving
mechanisms makes data owners unwilling to cooperate. For instance, in the VAR model, the
covariates are the lags of the target variable of each RES site, which means that agents (or
data owners) cannot provide covariates without also providing their power measurements.

To the best of our knowledge, only three works have proposed privacy-preserving approaches
for RES forecasting. Zhang and Wang described a privacy-preserving approach for wind power
forecasting with off-site time series, which combined ridge linear quantile regression with ADMM
(Zhang and Wang, 2018b). However, privacy with ADMM is not always guaranteed since it re-
quires intermediate calculations, allowing the most curious competitors to recover the data at
the end of several iterations, as shown in Section III.3.3.3. Moreover, the central node can also re-
cover the original and private data. Sommer et al. (2021) considered an encryption layer, which
consists of multiplying the data by a random matrix. However, the focus of this work was not data
privacy, but rather online learning, and the private data are revealed to the central agent who
performs intermediary computations. Berdugo et al. (2011) described a method based on lo-
cal and global analog-search (i.e., template matching) that uses solar power time series from
neighboring sites. However, agents only share reference time-stamps and normalized weights
of the analogs identified by the neighbors, hence forecast error is only indirectly reduced. In
this section, we also use ADMM as a central framework for distributed learning and forecasting,
in view of its flexibility in terms of communication setup for all agents involved, the possibility to
add a privacy-preserving layer, as well as the promising resulting forecast skill documented in
the literature.

In the previous section, a literature analysis of privacy-preserving techniques for VAR has grouped
these techniques as (a) data transformation, such as the generation of random matrices that
pre- or post-multiply the data (Li et al., 2013) or using principal component analysis with differ-
ential privacy (Dwork et al., 2014a), (b) secure multi-party computation, such as linear algebra
protocols (Du et al., 2004a) or homomorphic encryption (encrypting the original data in a way
that arithmetic operations in the public space do not compromise the encryption (Liu et al.,
2018a)), and (c) decomposition-based methods like the ADMM (Mateos et al., 2010b) or the
distributed Newton-Raphson method (Li et al., 2015a). The main conclusions were that data
transformation requires a trade-off between privacy and accuracy, secure multi-party compu-
tations either result in computationally demanding techniques or do not fully preserve privacy
in VAR models, and that decomposition-based methods rely on iterative processes and after a
number of iterations, the agents have enough information to recover private data.

With our focus on privacy-preserving protocols for very short-term forecasting with the VAR model,
the main research outcome from this section is a novel combination of data transformation and
decomposition-based methods so that the VAR model is fitted in another feature space without
decreasing the forecast skill (which contrasts with (Berdugo et al., 2011)). The main advantage
of this combination is that the ADMM algorithm is not affected and therefore: (a) asynchronous
communication between peers can be addressed while fitting the model; (b) a flexible privacy-
preserving collaborative model can be implemented using two different schemes, centralized
communication with a neutral node and peer-to-peer communication, and in a way that origi-
nal data cannot be recovered by central node or peers (this represents a more robust approach
when compared to the ADMM implementation by Zhang and Wang (2018b) and Sommer et al.
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(2021)).

The remaining of this section is organized as follows: Subsection IV.2 describes the distributed
learning framework. Subsection IV.3 formulates a novel privacy-preserving LASSO-VAR model.
Then, two case studies with solar and wind energy data are considered in Subsection IV.4. Con-
cluding remarks are provided in Subsection IV.5.

IV.2 Distributed Learning Framework

This section discusses the distributed learning framework that enables different agents or data
owners (e.g., RES power plant, market players, forecasting service providers) to exploit geo-
graphically distributed time series data (power and/or weather measurements, NWP, etc.) and
improve forecast skill while keeping data private. In this context, data privacy can either refer to
commercially sensitive data from grid-connected RES power plants or personal data (e.g., un-
der European Union General Data Protection Regulation) from households with RES technology.
Distributed learning (or collaborative forecasting) means that instead of sharing their data, the
model fitting problem is solved in a distributed manner. Two collaborative schemes are possible:
centralized communication with a central node (central hub) and peer-to-peer communication
(P2P).

In the central hub model, the scope of the calculations performed by the agents is limited by
their local data and the only information transmitted to the central node is statistics, e.g., aver-
age values or local data multiplied by locally estimated coefficients. The central node is respon-
sible for combining these local estimators and, when considering iterative solvers like ADMM,
coordinating the individual optimization processes to solve the main optimization problem. The
central node can be either a transmission/distribution system operator (TSO/DSO) or a forecast-
ing service provider. The TSO or DSO could operate a platform that promotes collaboration
between competitive RES power plants in order to improve the forecasting accuracy and re-
duce system balancing costs. On the other hand, the forecasting service provider could host
the central node and make available APIs and protocols for information (not data) exchange
between different data owners, during model fitting, and receives a payment for this service.

In the P2P, the agents equally conduct a local computation of their estimators, but share their
information with peers, meaning that each agent is itself agent and central node. While P2P
tends to be more robust (i.e., lower points of failure), it is usually difficult to make it as efficient
as the central hub model in terms of communication costs — when considering n agents, each
agent communicates with the remaining n−1.

The P2P model is suitable for data owners that do not want to rely (or trust) upon a neutral
agent. Potential business models could be: P2P forecasting between prosumers or RES power
plants (Elsinga and van Sark, 2017); smart cities characterized by an increasing number of sensors
and devices installed at houses, buildings, and transportation network Tascikaraoglu (2018).

In order to make these collaborative schemes feasible, the following fundamental principles
must be respected: (a) ensure improvement in forecast skill, compared to a scenario without
collaboration; (b) guarantee data privacy, i.e., agents and the central node cannot have ac-
cess to (or recover) original data; (c) consider synchronous and asynchronous communication
between agents. The formulation that will be described in Section IV.3 fully guarantees these
three core principles.
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IV.3 Privacy-preserving Distributed LASSO-VAR

Using the notation in Section III.3.1, n data owners are assumed to use the same number of lags
p to fit a LASSO-VAR model with a total number of T records. YAi ∈ RT×1 and ZAi ∈ RT×p

respectively denote the target and covariate matrix for the ith data owner. In LASSO-VAR, the
covariates and target matrices are obtained by joining the individual matrices column-wise, i.e.,
Z = [ZA1

, . . . ,ZAn
] and Y = [YA1

, . . . ,YAn
]. For distributed computation, the coefficient matrix of

data owner i is denoted by BAi
∈ Rp×n, i ∈ {1, . . . , n}.

When applying the collaboration schemes discussed in Section IV.2 to the distributed ADMM
LASSO-VAR formulation described in (70), at each iteration k each agent determines and trans-
mits (70a), given by

Bk+1
Ai

= argmin
BAi

(ρ
2
∥ZAi

Bk
Ai

+H
k − ZB

k −Uk − ZAi
BAi

∥22 + λ∥BAi
∥1
)

and then it is up to the central agent or peers (depending on the adopted structure) to compute
the quantities in (70b), i.e.,

H
k+1

=
1

n+ ρ

(
Y + ρZB

k+1
+ ρUk

)
and (70c), i.e.,

Uk+1 = Uk + ZB
k+1 −H

k+1
.

As shown in the previous section, although there is no direct exchange of private data, the
computation of (70b) and (70c) provides indirect information about these data, meaning that
confidentiality breaches can occur after a number of iterations.

This section describes the novel privacy-preserving collaborative forecasting method, which
combines multiplicative randomization of the data (Section IV.3.1) with the distributed ADMM
for the generalized LASSO-VAR model (Section IV.3.2), which had been previously formulated in
Section III.3.2. Communication issues (Section IV.3.5) are also addressed since they are common
in distributed systems.

IV.3.1 Data Transformation with Multiplicative Randomization

Multiplicative randomization of the data Chen and Liu (2008) consists of multiplying the data
matrix X ∈ RT×ns by full rank perturbation matrices. If the perturbation matrix M ∈ RT×T pre-
multiplies X, i.e., MX, the records are randomized. On the other hand, if perturbation matrix Q ∈
Rns×ns post-multiplies X, i.e., XQ, then the features are randomized. The challenges related to
such transformations are two-fold: (i) M and Q are algebraic encryption keys, and consequently
should be fully unknown by agents, (ii) data transformations need to preserve the relationship
between the original time series.

When X is divided by features, as is the case with matrices Z and Y when defining VAR models, Q
can be constructed as a diagonal matrix – see (92), where matrices in diagonal, QAi

∈ Rs×s, are
privately defined by agent i ∈ {1, . . . , n}. Then, agents post-multiply their data without sharing
QAi , since

[
XA1

,. . . ,XAn

]
︸ ︷︷ ︸

=X


QA1

0
. . .

0 QAn


︸ ︷︷ ︸

=Q

=

[
XA1

QA1
,. . . ,XAn

QAn

]
. (92)
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Unfortunately, the same reasoning is not possible when defining M, because all elements of
column j of M multiplies all elements of row j in X (containing data from every agent). Therefore,
the challenge is to define a random matrix M, unknown but at the same time built by all agents.

We propose to define M as
M = MA1MA2 . . .MAn , (93)

where MAi ∈ RT×T is privately defined by agent i. This means that

MX = [MA1
. . .MAn

XA1︸ ︷︷ ︸
=MXA1

, . . . ,MA1
. . .MAn

XAn︸ ︷︷ ︸
=MXAn

]. (94)

Some linear algebra-based protocols exist for secure matricial product, but they were designed
for matrices with independent observations and have proven to fail when applied to such ma-
trices as Z and Y (see Section III.3.3.2 for a proof). The calculation of MXAi

is described in
Algorithm 1:

Algorithm 1 Data Encryption.

Input from ith agent: XAi ∈ RT×s and MAi ∈ RT×T

Input from jth agent (j ̸= i): MAj ∈ RT×T

Output: MXAi
= MA1

. . .MAn
XAi

1: Initialization: Agent i generates random invertible matrices CAi
∈ RT×(r−s), DAi

∈ Rr×r, and
shares WAi

∈ RT×r with the n-th agent,

WAi
= [XAi

,CAi
]DAi

. (95)

2: Agent n receives WAi
,∀i.

3: Agent n shares MAn
WAi

with the (n− 1)-th agent.
4: for agent j = n− 1, . . . , 1 do
5: Agent j receives

(∏n
k=j+1 MAk

)
WAi , and

6: if j > 1 then
7: shares MAj

(∏n
k=j+1 MAk

)
WAi with agent j − 1

8: else
9: shares MAj

(∏n
k=j+1 MAk

)
WAi

with agent i
10: end if
11: end for
12: Agent i receives MWAi

from the 1-st agent and recovers MXAi
,

[MXAi
,MCAi

] = MWAi
D−1

Ai
. (96)

The privacy of this protocol depends on r, which is chosen according to the number of unique
values on XAi

. The optimal value for r is discussed in Proposition 5 of Appendix B.

IV.3.2 Formulation of the Collaborative Forecasting Model

When applying the ADMM algorithm, the protocol presented in the previous section should be
applied to transform matrices Z and Y in such a way that: (i) the estimated coefficients do not
coincide with the originals, instead they are a secret transformation of them, (ii) agents are un-
able to recover the private data through the exchanged information, and (iii) cross-correlations
cannot be obtained, i.e., agents are unable to recover Z⊤Z nor Y⊤Y.
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To fulfill these requirements, both covariate and target matrices are transformed through multi-
plicative noise. Both M and Q must be invertible, which is ensured if MAi and QAi are invertible
for i ∈ {1, . . . , n}.

IV.3.2.1 Formulation Let ZQ be the covariate matrix obtained through (92) and Y the target
matrix. Covariate matrix ZQ is divided by features, and the optimization problem which allows
recovering the solution in the original space, i.e.,

argmin
B

(1
2
∥Y −

∑
i

ZAi
BAi

∥22 + λ
∑
i

∥BAi
∥1
)
, (97)

is
argmin

Bpost

(1
2
∥Y−

∑
i

ZAi
QAi

Bpost
Ai

∥22+λ
∑
i

∥QAi
Bpost

Ai
∥1
)
. (98)

After a little algebra, the relation between the ADMM solution for (97) and (98) is

Bpost
Ai

k+1
= QAi

Bk+1
Ai

, (99)

suggesting coefficients’ privacy since the original B is no longer used. However, the limitations
identified in the previous section for (97) are valid for (98). That is, a curious agent can obtain
both Y and ZQ, and because Y and Z share a large proportion of values, Z can also be
recovered.

Taking covariate matrix MZQ and target MY, the ADMM solution for the optimization problem

argmin
B′

(1
2
∥MY−

∑
i

MZAi
QAi

B′
Ai
∥22+λ

∑
i

∥QAi
B′

Ai
∥1
)
, (100)

preserves the relation between the original time series if M is orthogonal, i.e., MM⊤=I. In this
case, a competitor can only obtain MY without distinguishing between M and Y. But the
orthogonality of M ensures that (MY)⊤MY = Y⊤Y, meaning that the covariance matrix is not
protected.

Note that the orthogonality of M is necessary to ensure that, while computing B′
Ai

,

Q⊤
Ai
Z⊤

Ai
M⊤

[
MZAi

QAi
B′k

Ai
−MZQB′k + . . .

]
=

Q⊤
Ai
Z⊤

Ai

[
ZAi

QAi
B′k

Ai
− ZQB′k + . . .

]
.

(101)

We remove the orthogonality condition on matrix M by using Q⊤
Ai
Z⊤

Ai
M−1 instead of Q⊤

Ai
Z⊤

Ai
M⊤,

Q⊤
Ai
Z⊤

Ai
M−1

[
MZAi

QAi
B′k

Ai
−MZQB′k + . . .

]
. (102)

Our proposal requires agents to compute MZAiQAi , MYAi and Q⊤
Ai
Z⊤

Ai
M−1, where M is a ran-

dom invertible matrix. Algorithm 2 summarizes our proposal for estimating a privacy-preserving
LASSO-VAR model.

Q⊤
Ai
Z⊤

Ai
M−1 is obtained by adapting Algorithm 1. In this case, the value of r is more restrictive

because we need to ensure that agent i does not obtain both Y⊤
Ai
M−1 and MYAi . Otherwise,

the covariance and cross-correlation matrices are again vulnerable. Let us assume that ZAi

and QAi
represent u unique unknown values and YAi

has v unique unknown values that are
not in ZAi

. Then, privacy is ensured by computing MZAi
QAi

and Q⊤
Ai
Z⊤

Ai
M−1 using the smaller

integer r such that
√
Tp− u<r<T/2 ∧ r > p, and then MYAi with

√
T−v<r′<T−2r ∧ r′ > 1 (see

Proposition 6 in Appendix B for determination of the optimal r). Appendix C presents an analysis
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of the data privacy for scenarios without and with collusion between agents (data owners)
during encrypted data exchange.

Finally, it is important to underline that Algorithm 2 can be applied to both central hub model
and P2P model schemes without any modification – depending on who (central node or peers,
respectively) receives MZAi

QAi
B′k+1

Ai
and computes (104)–(106).

Algorithm 2 Synchronous Privacy-preserving LASSO-VAR.

Input: Randomized data MZAiQAi , MYAi , Q
⊤
Ai
Z⊤

Ai
M−1

Output: Transformed coefficients B′
Ai
=QAiBAi , i=1, . . . , n

1: Initialization: B′0
Ai

, H
0
, U0 = 0, ρ ∈ R+, k = 0

2: for agent i = 1, . . . , n do

3: PAi
=
(
(ZAi

QAi
)⊤(ZAi

QAi
) + ρQ⊤

Ai
QAi

)−1

4: end for
5: while stopping criteria not satisfied do
6: for agent i = 1, . . . , n do

7: Initialization: B̃0
Ai

, H̃
0

, Ũ0 = 0, j = 0
8:

KAi=MZAiQAiB
′k
Ai
+H

k−MZQB′k−Uk (103)

9: while stopping criteria not satisfied do

10: B̃j+1
Ai

= PAi

(
Q⊤

Ai
Z⊤

Ai
M−1KAi

+ρ(H̃
j

−Ũj)
)

11: H̃
j+1

= Sλ/ρ

(
QAi

B̃j+1
Ai

+ Ũj
)

12: Ũj+1 = Ũj +QAi
B̃j+1

Ai
− H̃

j+1

13: j = j + 1
14: end while
15: B′k+1

Ai
= B̃j

Ai

16: end for
MZAiQAiB

′k
Ai

is shared with peers or central node, who computes (104)–(106),

17: MZQB′k =
1

n

∑
i

MZAi
QAi

B′k
Ai

(104)

18:

H
k+1

=
1

n+ ρ

(
MY +MZQB′k + ρUk

)
(105)

19: Uk+1 = Uk +MZQB′k+1 −H
k+1

(106)

20: k = k + 1
21: end while

IV.3.2.2 Malicious agents
The proposed approach assumes that agents should only trust themselves, requiring control
mechanisms to detect when agents share wrong estimates of their coefficients, compromising
the global model. Since MY and MZQB′k can be known by agents without exposing private
data, a malicious agent is detected through the analysis of the global error ∥MY−MZQB′k∥22.
That is, during the iterative process, this global error should smoothly converge, as depicted in
Figure 26 (left plot), and the same is expected for the individual errors ∥MY−MZAi

QAi
B′k

Ai
∥22,∀i.
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Figure 26 Error evolution (left: global error; right: error by agent with black lines representing the two agents
who add random noise to MZAiQAiB

′k
Ai

).

Table 10 Floating-point operations in Algorithm 1.

Encrypted information Operations

(MZAiQAi , Q
⊤
Ai

Z⊤
Ai

M−1) O(2Tr2 + 2T 2nr + T (p2 + r2))

MYAi O(Tr′2 + T 2nr′ + Tr′2)

∗ r = max(⌈
√
Tp− u⌉, p+ 1) and

√
T−v<r′<T−2r ∧ r′ > 1

In the example of Figure 26, two agents are assumed to add random noise to their coefficients.
This results in the erratic curve for the global error shown in Figure 26. An analysis of individual
errors, in Figure 26 (right plot), shows that all agents have smooth curves, except the two who
shared distorted information.

IV.3.3 Tuning of Hyperparameters

Since the ADMM solutions for (97) is related to the solution for (100), agents can tune hyper-
parameters (ρ and λ) by applying common techniques, such as cross-validation grid-search,
Nelder-Mead optimization, Bayesian optimization, etc., to minimize the loss function in (100). This
requires the definition of fitting and validation datasets and corresponding encryption by Algo-
rithm 1, taking into account that, for each fitting and validation pair, the matrix QAi

needs to be
the same, but all the others should be changed to keep data private.

IV.3.4 Computational Complexity

Typically, the computational complexity of an algorithm is estimated by the number of required
floating-point operations (defined as one addition, subtraction, multiplication, or division of two
floating-point numbers). When compared to the existing distributed ADMM literature applied
to the LASSO-VAR model (e.g., Cavalcante et al. (2017b); Cavalcante and Bessa (2017)), the
computational complexity of the ADMM algorithm remains almost the same – only p2n extra
floating-point operations come from considering QAi

B̃j+1
Ai

instead of B̃j+1
Ai

in line 11 and 12 of
Algorithm 2. However, there is also the computational cost related to the data transformation,
performed before running the ADMM algorithm. Table 10 summarizes the floating-point oper-
ations necessary to encrypt the data matrices ZAi and YAi . The computational time for such
data encryption is expected to increase linearly with the number of agents, and quadratically
with the number of records.
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(a) Data encryption by Algorithm 1.
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(b) ADMM (Algorithm 2) iteration.

Figure 27 Mean running time as a function of the number of agents.

A numerical analysis was performed by simulating data from VAR models with n ∈ {10, 100, 200,
. . . , 1600}, T ∈ {10000, 15000} and p = 5. Figure 27 summarizes the mean running times using an i7-
8750H @ 2.20GHz with 16 GB of RAM. To properly analyze the mean time per ADMM iteration, the
computational times for the cycle between lines 6 to 15 of Algorithm 2 (coefficients’ update) are
measured assuming that the n agents update it in parallel. That said, considering for example
a case with 10000 records and 500 agents, the data encryption takes around 15 minutes, and
then the Algorithm 2 takes around 10 seconds per iteration.

IV.3.5 Asynchronous Communication

When applying the proposed method, the matrices (104)–(106) combine the solutions of all
data owners, meaning that the “slowest” agent dictates the duration of each iteration. Since
communication delays and failures may occur due to computation or communication issues,
the proposed algorithm should be robust to this scenario. Otherwise, the convergence to the
optimal solution may require too much time. The proposed approach deals with these issues by
considering the last information sent by agents, but different strategies are followed according
to the adopted collaborative scheme.

Regarding the centralized scheme, let Ωk
i be the set of iterations for which agent i communi-

cated its information, until current iteration k. After receiving the local contributions, central
agent computes H

k
and Uk, in (105)–(106), by using

∑n
i=1 MZAi

QAi
B′max(Ωk

i )
Ai

. Then, central

agent returns H
k

and Uk, informing agents about max(Ωk
i ). To proceed, B′k+1

Ai
is updated by

using MZAi
QAi

B′max(Ωk
i )

Ai
in (103).

For the P2P approach, let Λk
i be the set of agents sharing information computed at iteration k,

with agent i, i.e., Λk
i={j : agent j sent MZAjQAjB

′k
Aj

to agent i}. After computing and sharing

MZAi
QAi

B′k
Ai

, a second round of peer-to-peer communication is proposed, where agents share
both Λk

i and
∑

j∈Λk
i
MZAjQAjB

′k
Aj

. After this extra communication round, agent i can obtain
missing information when Λk

i ̸= Λk
j , ∀i, j.

IV.3.6 Extension to Short-time Forecasting

The simplicity and competitive performance of VAR models for renewable energy predictions
up to 6h ahead motivated us to explore their extension for longer prediction horizons. Since
cross-correlation within power measurements is limited to a few hours, such extension requires
the use of weather forecasts. The vector autoregressive model with exogenous variables (VAR-
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X) allows predicting power generation by linearly combining power measurements with weather
forecasts.

Mathematically, let {yt}Tt=1 be an n-dimensional multivariate time series, where n is the number
of data owners, and {xt}Tt=1 be an m-dimensional multivariate time series. Then, {yt}Tt=1 follows a
VAR-X model with p lags and exogenous variables {xt}Tt=1, represented as VARn(p)-X, when the
following relationship holds:

yt = η +

p∑
ℓ=1

yt−ℓB
(ℓ) + xtB

(exog) + εt , (107)

for t = 1, . . . , T , where η = [η1, . . . , ηn] is the constant intercept (row) vector, η ∈ Rn; B(ℓ) represents
the coefficient matrix at lag ℓ = 1, ..., p, B(ℓ) ∈ Rn×n, and the coefficient associated with lag ℓ
of time series i (to estimate time series j) is positioned at (i, j) of B(ℓ), for i, j = 1, ..., n; B(exog)

is the coefficient matrix associated to the exogenous variables; and εt = [ε1,t, . . . , εn,t], εt ∈
Rn, indicates a white noise vector that is independent and identically distributed with mean
zero and nonsingular covariance matrix. By simplification, yt is assumed to follow a centered
process, η = 0, i.e., as a vector of zeros of appropriate dimensions. Similar to VAR, a compact
representation of a VARn(p)-X model reads as follows:

Y = ZB+E , (108)

where

Y =


y1

...

yT

 , B =



B(1)

...

B(p)

B(exog)


, Z =


z1

...

zT

 , and E =


ε1

...

εT

 ,

are obtained by joining the vectors row-wise, and defining, respectively define the T×n response
matrix, the (np+m)× n coefficient matrix, the T × (np+m) covariate matrix, and the T × n error
matrix, with zt = [yt−1, . . . ,yt−p,xt].

Although VAR-X allows the integration of exogenous variables, such as wind speed forecast,
it is not reasonable to assume a linear relationship between exogenous variables and power
generation. Therefore, we explore additive VAR-X models (VAR-AX), that capture the nonlinear
relations between power and weather variables through smooth functions, while maintaining
some of the positive aspects of the linear approaches,

yt = η +

p∑
ℓ=1

yt−ℓB
(ℓ) + x

(s)
t B(s) + εt , (109)

where x
(s)
t = [f1(xt,1), f2(xt,2), . . . , fm(xt,m)] and the functions fj(xij) are smooth functions fit from

the data, e.g., splines (Hastie and Tibshirani, 2017). Like VAR and VAR-X, this model can also
be represented in a matrix form Y = ZB + E. Once again, each time series is observed by a
single data owner and, consequently, the privacy-preserving protocol proposed above can be
extended to the VAR-X and VAR-AX models without major effort.

IV.4 Case Studies

IV.4.1 Very-short Term Forecasting

To simulate the proposed method, communication failures are modeled through Bernoulli ran-
dom variables Fit, with failure probability pi, Fit∼Bern(pi), for each agent i=1, . . . , n at each
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communication time t. In this experimental setup, equal failure probabilities pi are assumed for
all agents and, since a specific pi can generate various distinct failure sequences, 20 simulations
were performed for each pi ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The ADMM iterative process stops when all
agents achieve

∥Bk+1
Ai

−Bk
Ai
∥2

max(1,min(∥Bk+1
Ai

∥1, ∥Bk
Ai
∥1))

≤ϵ, (110)

where ϵ is the tolerance parameter (ϵ=5×10−4 is considered).

Regarding the benchmark models, the persistence and LASSO-autoregressive (LASSO-AR) mod-
els are implemented to assess the impact of collaboration over a model without collaboration.
The analog method described in Berdugo et al. (2011) is also implemented as a benchmark
model because: (a) it is the only work in the RES forecasting literature that implements collab-
orative forecasting without data disclosure; (b) when the forecasting algorithm was designed,
a trade-off between accuracy and privacy was necessary and the choice was privacy over
accuracy. This method is now briefly described.

Firstly, agent i searches the k situations most similar to the current power production values
yi,t−ℓ+1, . . . ,yi,t. This similarity is measured through the Euclidean distance. Secondly, the k most
similar situations (called analogs) are weighted according to the corresponding Euclidean dis-
tance. Agent i attributes the weight wAi(a) to the analog a. The forecast for h steps ahead is
obtained by applying the computed weights on the h values registered immediately after the k
analogs. The collaboration between agents requires the exchange of the time indexes for the
selected analogs and corresponding weights. Two analogs belong to the same global situation
if they occur at the same or at close timestamps. Agent i scores the analog a, observed at
timestamps ta, by performing

sAi
(a)= (1−α)wAi

(a)︸ ︷︷ ︸
own contribution

+
α

n

n∑
i=1

k∑
j=1

wAj
(j)Iϵ(ta, tj),︸ ︷︷ ︸

others’ weights for close timestamps

(111)

where α is the weight given to neighbor information, j are the analogs from other agents, reg-
istered at timestamps tj , and Iϵ(ta, tj) is the indicator function taking value 1 if |tj−ta| ≤ ϵ, with ϵ
being the maximum time difference for two analogs to be considered part of the same global
situation.

In the next subsections, two datasets are described, and results are analyzed. The model’s
accuracy is measured in terms of NRMSE calculated for agent i and lead-time h, with h=1, . . . , 6,
as

NRMSEi,h =

√
1
T

∑T
t=1(ŷi,t+h − yi,t+h)2

max({yi,t+h}Tt=1)−min({yi,t+h}Tt=1)
, (112)

where ŷi,t+h represents the forecast generated at time t.

IV.4.1.1 Solar Power Data

Data Description

The proposed algorithm is also applied to forecast solar power up to 6 hours ahead. The data
is publicly available in (Gonçalves and Bessa, 2020) and consists of hourly time series of solar
power from 44 micro-generation units, located in a Portuguese city, and covers the period from
February 1, 2011 to March 6, 2013. Since the VAR model requires the data to be stationary, the
solar power is normalized through a clear sky model, which gives an estimate of the solar power
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Figure 28 Impact of hyperparameters for h = 1, considering solar power dataset.

Table 11 NRMSE for synchronous models, considering solar power dataset.

h=1 h=2 h=3 h=4 h=5 h=6

Persistence (t)∗ 0.1605 0.2792 0.3768 0.4510 0.5020 0.5326

Persistence (t+ h-23)∗ 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728

Analogs Berdugo et al. (2011)† 0.1044 0.1305 0.1476 0.1578 0.1628 0.1649

LASSO-AR∗ 0.1010 0.1317 0.1429 0.1475 0.1492 0.1499

LASSO-VAR† 0.0923✓ 0.1236✓ 0.1385✓ 0.1451✓ 0.1469✓ 0.1484✓

∗ non-collaborative † collaborative

✓ statistically significant improvement against all others (DM test)

in clear sky conditions at any given time Bacher et al. (2009). This clear-sky model is fully data-
driven and does not require any site-specific information (coordinates, rated power, etc.) since
it estimates the clear-sky power time series exclusively from historical on-site power observations.
Also, night-time hours are excluded by removing data for which the solar zenith angle is larger
than 90. Based on previous work Bessa et al. (2015b), a LASSO-VAR model to forecast yi,t+h at
time t (using lags t− 1, t− 2 and t+ h− 23) is evaluated with a sliding-window of one month and
the model’s fitting period consists of 12 months, h ≤ 6.

It is important to note that the LASSO-VAR model can be applied to both solar and wind power
time series without any modification. Furthermore, when compared to wind power, solar power
forecasting is more challenging because the lags 1 and 2 are zero for the first daylight hours, i.e.,
there are fewer unknown data, and this makes it easier to recover original data. In our protocol,
this means more restrictive values for u and v, which are crucial when defining r and r′, as stated
in Proposition 6.

Results and Discussion

The hyperparameters ρ and λ were determined by cross-validation (12 folds) in the initial model’s
fitting dataset, by considering the values of ρ, λ ∈ {0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25}. Figure 28 illustrates
the results in terms of NRMSE, for h = 1.

To access the quality of the proposed collaborative forecasting model, the synchronous LASSO-
VAR is compared with benchmark models. Both central hub and P2P model have the same
accuracy when considering synchronous communication. Table 11 presents the NRMSE for all
agents, distinguishing between lead-times. In general, the smaller the forecasting horizon, the
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Figure 29 Cross-correlation plot (CCF) between two solar power plants.

larger the NRMSE improvement, i.e.,

(NRMSEBench. − NRMSELASSO-VAR) /NRMSEBench. · 100%.

Besides, since the proposed LASSO-VAR and the LASSO-AR models have similar NRMSE for h > 3,
the Diebold-Mariano test (Diebold and Mariano, 2002)is applied to test the superiority of the
proposal, assuming a significance level of 5%. This test showed that the improvement is statisti-
cally significant for all horizons. It is important to note that the decrease in the improvement is
explained by the cross-correlation between the geographically distributed time series data, as
depicted in Figure 29. Since the dataset is from a small municipality in Portugal, it is expected
that the highest improvement occurs for the first lead times (in particular the first one), where the
cross-dependencies between time series have the most effect. However, this depends on the
geographical layout and distance between power plants. For instance, in (Cavalcante et al.,
2017b), the results for wind power plants show the highest improvement for the second lead time;
in the test case of western Denmark (Tastu et al., 2011), the highest cross-dependency between
two groups of wind farms was observed for lag two.

Figure 30 depicts the relative improvement in terms of NRMSE for the 44 agents. According to
the Diebold-Mariano test, the LASSO-VAR model outperforms benchmarks in all lead-times for at
least 25 of the 44 agents. Indeed, some agents contribute to improving the competitors’ fore-
cast without having a benefit to their own forecasting accuracy. Then, even if privacy is ensured,
such agents can be unwilling to collaborate, which motivates data monetization through data
markets, as proposed in the next section.

Table 12 presents the mean running times and the number of iterations of both non-distributed
and distributed approaches. The proposed schemes require larger execution times since they
require estimating B′k

Ai
through a second ADMM cycle (Algorithm 2). However, the non-distributed

LASSO-VAR requires more iterations to converge.

For asynchronous communication, equal failure probabilities pi are assumed for all agents. Ta-
ble 13 shows the mean NRMSE improvement for different failure probabilities pi, i ∈ {1, . . . , n}.
In general, the greater the pi the smaller the improvement. Despite the model’s accuracy de-

Table 12 Mean running times (in sec) per iteration and number of iterations until convergence, considering
solar power dataset.

Non distributed Central LASSO-VAR P2P LASSO-VAR

LASSO-VAR Enc. data ADMM Enc. data ADMM

0.035 (≈ 410) 65.46 0.052 (≈ 300) 65.46 0.1181 (≈ 300)
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Table 13 Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-VAR over the LASSO-AR
model, considering solar power dataset.

h=1 h=2 h=3 h=4 h=5 h=6

pi central P2P central P2P central P2P central P2P central P2P central P2P

0 8.41 6.05 2.95 1.52 1.39 0.93

0.1 7.93 8.41 5.98 6.05 2.91 2.95 1.49 1.52 1.35 1.39 0.89 0.93

0.3 7.45 ” 5.89 ” 2.89 ” 1.40 ” 1.18 ” 0.69 ”

0.5 6.69 ” 5.77 ” 2.88 ” 1.30 ” 1.00 ” 0.52 ”

0.7 5.71 ” 5.54 ” 2.84 ” 1.24 ” 0.89 ” 0.33 ”

0.9 3.75 8.10 5.19 5.75 2.74 2.78 0.75 1.47 0.62 1.38 -0.82 0.88
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Figure 30 Relative NRMSE improvement (%) over the baseline models, considering solar power dataset.

creases slightly, the LASSO-VAR model continues to outperform the AR model for both collabo-
rative schemes, which demonstrates high robustness to communication failures.

Figure 31 complements this analysis by showing the evolution of the loss while fitting the LASSO-
VAR model, for pi ∈ {0.5, 0.9}. For the centralized approach, the loss tends to stabilize around
larger values. In general, the results are better for the P2P scheme since in the centralized ap-
proach if an agent fails the algorithm proceeds with no chance of obtaining its information. In
P2P, this agent may have communicated his contribution to some peers and the probability of
losing information is smaller.

IV.4.1.2 Wind Power Data

Data Description

The proposed method is also experimented with a real wind power dataset, comprising hourly
time series of wind power generation in 10 zones, corresponding to 10 wind farms in Australia (Hong
et al., 2016), as depicted in Figure 32. This dataset was used in the Global Energy Forecasting
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Figure 31 Loss while fitting LASSO-VAR model, considering solar power dataset.
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Figure 32 GEFCom2014 wind power dataset.

Competition 2014 (GEFCom2014) and it is publicly available, covering the period from January
1, 2012 to November 30, 2013. The power generation for the next 6 hours is modeled through
the LASSO-VAR model, which combines data from the 10 data owners and consider the most
recent power measurements (lags 1h to 6h), based on the correlation analysis. A sliding-window
of one month is considered and the model’s fitting period consists of 12 months.

Results and Discussion

The hyperparameters ρ and λ were determined by cross-validation (12 folds) in the initial model’s
fitting dataset, by considering the values of ρ, λ ∈ {1, 2, 3, 4, 5, . . . , 10}. Figure 33 illustrates the
results in terms of NRMSE, when h = 1.

To access the quality of the proposed collaborative forecasting model, the synchronous LASSO-
VAR is compared with benchmark models. Table 14 presents the NRMSE for all agents, per lead-
time. According to the Diebold-Mariano test with a significance level of 5%, the improvements
obtained by our proposal are statistically significant for all horizons.

Figure 34 complements this analysis by showing the relative improvement in terms of NRMSE for
the 10 agents. Again, according to the Diebold-Mariano test, the LASSO-VAR model outperforms
benchmarks in all lead-times for at least 9 out of the 10 agents. In general, the spatio-temporal
information is more relevant for the highest lead-times, as corroborated by the cross-correlation
plots at Figure 35, which shows cross-correlations between a sample of wind power plants. The
cross-correlation between these wind power plants keeps increasing until lag 6; this means that,
for example, the current power measurement at WF9 is more correlated with the power mea-
surement of WF2 at 6 hours ago. It is intuitively expected that this is due to the geographical

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

70



D4.1 Distributed and Collaborative Forecasting

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.350

0.375

0.400

0.425

0.450

2 4 6 8 10 12
λ

N
R

M
S

E

ρ ● ● ● ● ● ● ● ● ● ● ● ●1 2 3 4 5 6 7 8 9 10 11 12

Figure 33 Impact of hyperparameters for h = 1, considering wind power dataset.

Table 14 NRMSE for synchronous models, considering wind power dataset.

h=1 h=2 h=3 h=4 h=5 h=6

Persistence (t)∗ 0.1045 0.1578 0.1939 0.2220 0.2452 0.2651

Analogs Berdugo et al. (2011)† 0.1048 0.1552 0.1889 0.2145 0.2346 0.2515

LASSO-AR∗ 0.1008 0.1513 0.1830 0.2063 0.2242 0.2386

LASSO-VAR† 0.0985✓ 0.1446✓ 0.1729✓ 0.1938✓ 0.2104✓ 0.2239✓

∗ non-collaborative † collaborative

✓ statistically significant improvement against all others (DM test)

layout (Figure 32 (a)) of the various wind farms and meteorological particularities of the region,
such as wind speed. Figure 32 (b) depicts the wind rose for a location close to WF91, which
shows that the wind direction during these two years was quite varied, but the strongest winds
occur mostly from northwest or west, meaning that wind power plants located to the east (WF9,
WF10) or southeast (WF5, WF6, WF7, WF8) can strongly benefit from the lags of wind farms WF1
to WF4.

Concerning computational complexity, Table 15 presents the mean running times and the num-
ber of iterations of both non-distributed and distributed approaches. When compared to a

1https://mesonet.agron.iastate.edu/ (accessed on January 2021)
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Figure 34 Relative NRMSE improvement (%) over the baseline models, considering wind power dataset.
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Table 15 Mean running times (in sec) per iteration and number of iterations until convergence, considering
wind power dataset.

Non distributed Central LASSO-VAR P2P LASSO-VAR

LASSO-VAR Enc. data ADMM Enc. data ADMM

0.038 (≈ 400) 125.46 0.059 (≈ 300) 125.46 0.1309(≈ 300)

Table 16 Mean relative NRMSE improvement (%) of the asynchronous ADMM LASSO-VAR over the LASSO-AR
model, considering wind power dataset.

h=1 h=2 h=3 h=4 h=5 h=6

pi central P2P central P2P central P2P central P2P central P2P central P2P

0 2.25 4.26 5.30 5.83 5.94 5.95

0.1 2.11 2.25 4.18 4.26 5.22 5.30 5.71 5.83 5.76 5.94 5.71 5.95

0.3 1.97 ” 4.09 ” 4.21 ” 4.53 ” 5.04 ” 5.58 ”

0.5 1.85 ” 3.48 ” 3.65 ” 3.84 ” 4.27 ” 4.72 ”

0.7 1.51 ” 2.97 ” 2.89 ” 3.41 ” 3.80 ” 3.98 ”

0.9 0.97 1.04 2.21 4.01 2.32 4.98 2.97 5.52 3.09 5.76 3.12 5.63
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Figure 35 Cross-correlation plot (CCF) between two wind power plants.

non-distributed LASSO-VAR version, the proposed schemes require larger execution times since
they require estimating B′k

Ai
through a second ADMM cycle (Algorithm 2). However, the non-

distributed LASSO-VAR requires more iterations to converge.

Finally, regarding asynchronous LASSO-VAR (pi ≥ 0.1), Table 16 summarizes the mean NRMSE
improvement for all agents over the LASSO-AR model, considering different failure probabili-
ties pi, i ∈ {1, . . . , n}. In general, the greater the pi the smaller the improvement. Despite the
model’s accuracy decreases slightly, the LASSO-VAR model continues to outperform the LASSO-
AR model for both collaborative schemes, which demonstrates high robustness to communica-
tion failures.
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Figure 36 Relative improvement [%] when comparing LASSO-VAR-AX (collaborative model) with LASSO-AR-
AX (non-collaborative model).

IV.4.2 Short Term Forecasting

Data Description

The proposed additive method is tested with a confidential real wind power dataset , comprising
15 min resolution time series of wind power generation for 60 wind power turbines (from 13 differ-
ent wind farms). In addition, the NWP from ECMWF-HRES on a grid surrounding the production
sites are available, with forecasting horizons from 15 min to 48h-ahead. The weather variables
consist of predictions for u and v wind components at 100 m height. Data covers the period
from October 2018 to September 2020.

Benchmarks

LASSO-VAR-AX is compared with LASSO-AR-AX (model using only local data) and GBT models,
considering forecasts up to 48h-ahead with 15 min resolution. Two scenarios are considered:
(i) for the prediction horizons between 0 and 24h, a model is trained considering the weather
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Figure 37 Relative improvement [%] when comparing LASSO-VAR-AX with GBT.

forecasts generated at midnight of that day, and the ones generated at midnight of the pre-
vious day; (ii) for horizons >24h, a model is trained with a unique set of weather forecasts. In
terms of lags, only the 4 most recent power measurements are considered, based on the cross-
correlation analysis.

The performance is measured through MAE and RMSE. LASSO-based models are estimated by
using ADMM, meaning two hyper-parameters to tune (λ and ρ). Both ADMM and GBT hyper-
parameters are determined by Bayesian optimization, through 12-fold cross-validation within the
one year training set. The hyper-parameters are updated every 6 months.

Results and Discussion

The results consider a synchronous communication scenario, and the goal is to show the poten-
tial of extending linear models to predict longer horizons.

Figure 36 shows the relative improvement in terms of MAE and NRMSE, for the 60 wind turbines,
when comparing LASSO-VAR-AX (collaborative model with polynomial splines (Hastie and Tib-
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shirani, 2017)) with LASSO-AR-AX (local model with polynomial splines). In general, at least 30 of
the 60 wind turbines improve their accuracy when using collaborative forecasting.

Since the additive methods aim to capture nonlinear relationships, the performance of the
LASSO-VAR-AX is also compared to the performance of GBT models. Figure 37 shows the cor-
responding relative improvement. While the figure shows each model have different errors for
different time periods, the average trend is similar on both MAE and NRMSE metrics. We would
like to emphasize that the focus of this LASSO-VAR extension was not to outperform GBT models,
but rather to ensure data privacy by using the protocol we proposed in this section.

IV.5 Concluding Remarks

RES forecast skill can be improved by combining data from multiple geographical locations.
One of the simplest and most effective collaborative models for very short-term forecasts is the
vector autoregressive model. However, different data owners might be unwilling to share their
time series data. In order to ensure data privacy, this work combined the advantages of the
ADMM decomposition method with data encryption through linear transformations of data. It is
important to underline that the coefficients matrix obtained with the privacy-preserving protocol
is the same one obtained without any privacy protection.

This novel method also included an asynchronous distributed ADMM algorithm, making it possi-
ble to update the forecast model based on information from a subset of agents and improve
the computational efficiency of the proposed model. The mathematical formulation is flexible
enough to be applied in two different collaboration schemes (central hub model and P2P) and
paved the way for learning models distributed by features, instead of observations.

The results obtained for a solar and a wind energy dataset show that the privacy-preserving
LASSO-VAR model delivers a forecast skill comparable to a model without privacy protection
and outperformed a state-of-the-art method based on analog search. Furthermore, it exhibited
high robustness to communication failures, in particular for the P2P scheme.

Lastly, an alternative business model to privacy-preserving models are data markets, where dif-
ferent agents sell and buy data of relevance for RES forecasting. In this case, agents are prone
to share their data if being remunerated for it. The next section is focused on data monetiza-
tion, and an auction mechanism is proposed in which both data privacy and monetization are
possible by considering that agents buy forecasts from a trusted entity instead of directly buying
sensible data.

V. Online distributed learning in wind power forecast-
ing

V.1 Introduction

Following the sustained deployment of renewable energy generation capacities, especially in
the case of wind energy, forecasting has received increasing interest. Accurate wind power
forecasts enhance the profitability of wind farms when participating in electricity markets (Mazzi
and Pinson, 2017). Power system operators rely on generation and load forecasts for the op-
timal scheduling of conventional generation units and operating reserves (Matos et al., 2017).
An overview of state-of-the-art methods for wind power forecasting is presented in (Giebel and
Kariniotakis, 2017). While lead times ranging from hours to days have been of central focus
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owing to wind power participation in electricity markets, other lead times ranging from a few
minutes to a week ahead (or possibly more) are of relevance to a broad range of operational
and decision-making problems. The demand for accurate wind power forecasts with very short
lead times ranging from minutes to a few hours has supported the development of novel fore-
casting methods (Pinson, 2012a; Pinson and Madsen, 2012). For very short lead times, statistical
and machine-learning methods clearly dominate over methods based on numerical weather
forecasts. The majority of forecasting methods only utilise local data that is recorded at the wind
farm of interest. Numerous publications have shown that using high-dimensional learning meth-
ods in combination with data from surrounding sites, such as meteorological stations or wind
farms, can improve forecast accuracy substantially (He et al., 2014; Tastu et al., 2011, 2014). Gen-
erally, this modelling approach explores and exploits spatial-temporal patterns in wind power
generation. It is fairly intuitive since a propagating wind field causes lagged changes in the
power production between two or more geographically dispersed wind farms. Naturally, an
upwind location experiences changes in wind speed first before a downwind location that is in
the trajectory of the same wind field does. Hence, using explanatory variables that are related
to wind speed or power production for an upwind location helps to forecast future changes
in the power production for a downwind location. These dependencies may be very complex
and conditional on prevailing weather conditions (Girard and Allard, 2013). Exploiting off-site
information and space-time dynamics is something that is broadly considered in environmetrics
e.g. for ozone forecasting (Paci et al., 2013), for the prediction of weather variables e.g. pre-
cipitation (Fabio Sigrist et al., 2012), and in traffic forecasting (Min and Wynter, 2011), etc. It also
shares similarities with the problem of forecasting panel data with cross-sectional dependencies
in econometrics (Baltagi et al., 2014).

In practice, many algorithms that exploit spatial-temporal dependencies in wind power fore-
casting are based on batch learning, i.e., based on the assumption that model coefficients are
time-invariant. They hence are estimated once and for all on a training dataset (the so-called
“batch” of data). The estimated coefficients are then used to issue predictions even though new
data arrives sequentially. In applications where the true model coefficients are time-varying,
such as in wind power forecasting due to seasonal variations in wind dynamics, as well as the
environment of wind farms, using batch-learning algorithms impacts forecast accuracy nega-
tively. An approach that is then often considered is to re-estimate the coefficients using a sliding
or expanding training window whenever new data samples are available (Dowell and Pinson,
2016; Zhang and Wang, 2018a). The training samples are usually weighted to control how fast
the estimated coefficients adapt to changes in the dataset. However, this approach is unattrac-
tive in cases where the learning algorithm cannot efficiently re-estimate the model coefficients.
Especially for high-dimensional models the time required to estimate model coefficients can be
prohibitive for many applications. Computationally efficient algorithms estimate time-varying
model coefficients on the fly by using recursivity, whenever a new data sample is available.
We use the term online learning when referring to such learning algorithms. Analogously, the
term offline (batch) learning refers to algorithms where the time-invariant model coefficients are
estimated on a batch of training samples.

Most of the proposed online learning algorithms in the wind power forecasting literature are used
in combination with models that rely on explanatory variables which are measured exclusively
at the wind farm of interest. Relevant methods are presented in, e.g., (Møller et al., 2008) and
(Bessa et al., 2012a). Notable exceptions are the sparse online warped Gaussian model of (Kou
et al., 2013) and the proposal of (Messner and Pinson, 2018). In the latter case, the authors
described an online algorithm for high-dimensional vector autoregressive (VAR) models. A limi-
tation is that all explanatory variables must be collected by a single agent to eventually employ
that algorithm. Throughout the paper we use the term centralised learning when referring to
situations where it is necessary to have direct access to all explanatory variables centrally in
order to estimate model coefficients. Considering that wind farms are operated by competing
agents and that power production data and related measurements are often deemed con-
fidential, the requirement to collect all explanatory variables centrally brings some limitations.
The unwillingness of wind farm operators to share data with third parties motivates the recent
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interest in distributed learning (and possibly privacy-preserving) algorithms in the field of wind
power forecasting.

Distributed learning algorithms conceptually aim at relaxing this necessity of collecting all ex-
planatory variables centrally, by decomposing a learning problem into many subproblems and
one master problem. When estimating the coefficients of a forecasting model for a given wind
farm of interest, for which some explanatory variables are provided by other wind farms, the
distributed algorithm assigns a subproblem to each wind farm where explanatory variables are
available. The model coefficients are then estimated by alternating between solving the master
problem and subproblems, taking advantage of algorithm-specific variables that link the sub-
problems to the master problem and vise versa. With such algorithms it is no longer necessary
to collect all explanatory variables centrally since the explanatory variables that are provided
by other wind farms are only used in their respective subproblem. The appropriate design of
distributed learning algorithms protects the explanatory variables of wind farm operators by not
exposing them to others. We refer to this condition when stating that the data privacy of a wind
farm operator is protected.

Today, to the best of our best knowledge, only a handful of papers have investigated distributed
learning algorithms for wind power forecasting (and renewable energy forecasting, more gen-
erally). The most prominent papers all build upon the Alternating Direction Method of Multipliers
(ADMM). In (Pinson, 2016a) and (Cavalcante et al., 2017a) algorithms are developed to estimate
the coefficients of an AR-X model while regularising with the LASSO. (Zhang and Wang, 2018a)
extends prior work to probabilistic forecasts but replace the L1-penalization of the LASSO with an
L2-penalization to obtain a computationally cheaper algorithm. Unfortunately, prior distributed
algorithms do not allow online learning to be performed. Therefore, to estimate time-varying co-
efficients it is necessary to apply the algorithms on a sliding or expanding training window while
weighting the data samples. As a consequence, we aim here to close the gap between online
and distributed learning methods. Our contribution consequently includes: (i) the development
of an online ADMM version, and (ii) additionally proposing a mirror-descent-inspired algorithm
for online distributed learning. Both have advantages and caveats to be explored through sim-
ulation studies and the application to a case study with a large real-world dataset consisting of
hundreds of wind farms in Denmark.

The remainder of this paper is organised as follows. The general model and forecasting frame-
work is introduced in Section V.2. Section V.3 describes an online ADMM version which we refer
to as Online ADMM (OADMM). Anticipating the non-negligible computational complexity of
the OADMM, the computationally lighter Adaptive Distributed MIrror Descent Algorithm made
Sparse (Adaptive D-MIDAS) is presented thereafter in Section V.4. The inherent properties of
these two approaches are analysed through a simulation study in Section V.5. Thereafter, the al-
gorithms are benchmarked on a large real-world dataset consisting of 311 wind farms in Section
V.6. Conclusions and perspectives for future work close the paper in Section V.7.

V.2 Modelling and forecasting framework

V.2.1 From agents and their data to relevant models

Wind power generation is observed at regular time intervals at S sites. Let us write ys,t for the
power measurement of site s ∈ ΩS = {s1, s2, ..., sS} and time stamp t ∈ {1, 2, . . . , T}. Power
measurements are commonly normalised by the nominal capacity of the site, such that even-
tually, ys,t ∈ [0, 1]. We restrict ourselves to AR-X models using recent power measurements as
explanatory variables, in a fashion similar to the models used by (Messner and Pinson, 2018),
(Cavalcante et al., 2017a), (Pinson, 2016a) and (Zhang and Wang, 2018a). However, extend-
ing such AR-X models to accommodate additional explanatory variables like wind speed for
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instance is straightforward. Generalisation to nonlinear modelling approaches would be more
complicated. Depending on the type of data collected, it may be sensible to centre the data.
Other types of transformations may additionally be considered. For instance for nonlinear and
bounded processes like wind power generation, the generalized logit-Normal transformation of
(Pinson, 2012a) may render more Gaussian innovations and yield a stochastic process that is
more homoskedastic. Without any loss of generality, we assume that ys,t are transformed power
measurements.

The operator of site sj , referred to as central agent, contracts a set Ω(j)
S ⊂ ΩS \ sj of other sites

to enter a learning agreement. Consequently, all sites si ∈ Ω
(j)
S are referred to as contracted

agents. In practice, this means that the contracted agents will support sj in improving wind
power forecasts through a distributed learning framework without exposing their explanatory
variables to the central agent. The cardinality of Ω(j)

S will certainly be small in practice, since it
may not be of relevance for a central agent to contract a large number of sites e.g. due to
the limited scale of dependence structures in space and time, and possible transaction costs.
Here, for simplicity, we assume that the cardinality of Ω(j)

S is S − 1, so as to overlook the selection
problem. We further assume that all contracted agents are rational and act truthfully. Therefore,
we overlook the potential of malicious behaviour by assuming that the learning network design
incentivises all agents to be fully collaborative (e.g. through contracts).

An AR-X model is used to link the power measured at site sj and time t with past measurements
of site sj and the sites of the contracted agents. This gives

ysj ,t = βsj ,0,t +

L∑
l=1

βsj ,l,t ysj ,t−l︸ ︷︷ ︸
on-site

+
∑

s∈Ω
(j)
S

βs,l,t ys,t−l︸ ︷︷ ︸
off-site

+ ϵsj ,t (113)

i.e., as a linear combination of past power measurements for all sites plus an intercept term βsj ,0,t

and an innovation term ϵsj ,t with zero mean and finite variance. The scalars βs,l,t are the model
coefficients for lag l = 1, . . . , L and site s ∈ ΩS . L denotes the order of the auto-regressive process.
For simplicity, we consider that the maximum lag L is the same for the central and contracted
agents, though it does not need to be. In addition a time index t is used, as it is assumed that the
model coefficients are time-varying. While it may be common in the econometrics literature to
assume that those coefficients follow some process e.g. autoregressive (Bekierman and Manner,
2018), we consider that these coefficients follow a random walk with varying means. They can
hence be tracked with some simple form of Kalman filtering where parameters are updated
recursively. This approach is common in wind power forecasting, as in the examples of (Pinson,
2012a) and (Pinson and Madsen, 2012) among others.

The model in (113) has many coefficients, since a different coefficient is used for each combina-
tion of location and lagged value. This potentially leads to the need to estimate L× S + 1 coef-
ficients with L× S + 1 being large. As an alternative one may parameterise the spatio-temporal
dynamics of wind power generation, as commonly done in environmetrics and statistical mod-
elling of meteorogical variables (Fabio Sigrist et al., 2012). However, here, these dynamics are
very complex and conditional on prevailing weather conditions (Girard and Allard, 2013). Con-
sequently, when having access to large datasets as is common with wind power forecasting, it is
possible to increase the number of coefficients to be estimated. In parallel, note that in practice
many of the βs,l,t coefficients are expected to be 0, depending on the de-correlation range
and prevailing wind direction. This is why we employ a fully data-driven approach to variable
selection and coefficient estimation through L1 regularisation. In addition, since we are working
within an online learning framework, the resulting model coefficients are time-varying and are
thus expected to capture the slow variations in wind power dynamics e.g. induced by seasons
and changes in the environment of the wind farms.
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For convenience we rewrite (113) in the compact form

ysj ,t =
∑
s∈ΩS

as,t−1βs,t + ϵsj ,t (114)

where as,t−1 is an horizontal vector gathering the values of explanatory variables, at time t and
location s, and βs,t is the corresponding vector of model coefficients, i.e,

as,t−1 =

{
[1, ys,t−1, . . . , ys,t−L], s = sj

[ys,t−1, . . . , ys,t−L], otherwise
(115)

and

βs,t =

{
[βs,0,t, βs,1,t, . . . , βs,L,t]

⊤, s = sj

[βs,1,t, . . . , βs,L,t]
⊤, otherwise

(116)

Within this modelling framework, the largest contribution to explaining the dynamics of ysj ,t
comes from local information given by lagged values of this process. In comparison, offsite infor-
mation provides a lower contribution, though still allowing a significant improvement of forecast
accuracy for short lead times (Messner and Pinson, 2018). Since most of the βs,l,t coefficients
are expected to be 0, this also implies that a central agent eventually does not need to make
a learning agreement with many other wind farms, hence limiting communication needs and
potential contracts if distributed learning was to be remunerated.

V.2.2 Framework for distributed and online learning

When estimating the model coefficients of such an AR-X model in a centralised setup, an agent
is required (most likely the operator of site sj , i.e., the central agent, or the contracted fore-
cast vendor) to gather all explanatory variables. In a distributed learning network, however, the
coefficient estimation problem is decomposed into many subproblems that are solved by the
agents who entered the learning agreement. In our case the problem is conveniently decom-
posed across all S wind farm operators. The architecture of our distributed learning network is
visualised in Figure 38, where the arrows indicate information exchange.

Regularly applied in distributed networks, a fusion centre (supervisory node) oversees the com-
munication among all agents. In practice, the central agent does not directly communicate
with its contracted agents, i.e., information is not directly exchanged via a peer-to-peer con-
nection. The reason for designing the network like this is twofold. On the one hand, the com-
munication becomes more structured for large-scale applications where each member of the
learning agreement receives a forecast for its site. This requires estimating the coefficients of at
least S models in parallel. On the other hand, it may support some of the privacy concerns of
wind farm operators who do not wish their private information to be exposed to other agents.

In centralised learning the flow of information is unidirectional from the contracted agents to the
central agent. Distributed learning algorithm require instead a bidirectional exchange of infor-
mation, as the arrows show in Figure 38. Our distributed learning algorithms require each agent
to solve their assigned subproblem. This is fundamentally different from centralised learning,
where only the central agent performs computations when estimating the model coefficients.

Numerous distributed and online algorithms have been proposed in the literature, though not for
application in renewable energy forecasting. While first focusing on the available online versions
of the ADMM it was observed that all algorithms address consensus problems, i.e., require the
design matrix to be horizontally partitioned across all agents (Suzuki, 2013; Wang and Banerjee,
2012; Matamoros, 2017). Figure 39 illustrates the difference between a horizontal and vertical
partitioning of the set of explanatory variables in a model like the one we use here as a basis for
forecasting.
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Figure 38 Architecture of the distributed learning network

Figure 39 Horizontal (left) and vertical (right) partitioning of a matrix across S agents. Both matrices have
equal dimensions. Each column represents a unique feature whereas a row is related to a time instance.

From (114), it can clearly be seen that in our forecasting problem the design matrices are natu-
rally vertically partitionable across all S agents, i.e. each agent observes a unique subset of the
whole set of explanatory variables. Horizontally partitionable datasets are found in applications
where instances of the design matrix are recorded at different locations but with identical fea-
tures (e.g., in clinical trials carried out across multiple hospitals). While online versions of ADMM
have already been proposed for horizontally partitionable design matrices, this is not the case
for vertically partitionable ones. This motivates our proposal asdescribed in the following section.

V.3 Online Alternating Direction Method of Multipliers (OADMM)

(Pinson, 2016a) originally proposed using the ADMM (Boyd et al., 2010) to estimate the AR-
X model coefficients in (113) in a distributed fashion while applying L1-regularisation with the
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LASSO. The applied ADMM estimates the model coefficients on a batch of training samples and
does not allow for efficient coefficient re-estimates in applications where the true coefficients are
expected to be time-varying. We thus extend this algorithm to an online version that minimises
the cumulative loss over all observed data samples. Our online version efficiently re-estimates all
model coefficients through recursions whenever a new data sample is available. A flowchart for
the Online ADMM approach (abbreviated OADMM) is presented in Figure 40, and a detailed
algorithm is available in Algorithm 3.

Figure 40 Flowchart for the Online ADMM (OADMM) approach for online distributed learning applied to
wind power forecasting.

V.3.1 Coefficient estimation through a time-varying optimisation problem

Considering 1-step ahead forecasting the OADMM approach solves an unconstrained minimi-
sation problem. For every time stamp t, it can be formulated as

min
{βs,t}s

1

2

t∑
τ=1+L

(∑
s∈ΩS

as,τ−1βs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

∥βs,t∥1 (117)

where as,τ−1 and βs,t are as defined in (115) and (116). In parallel, λ ≥ 0 is the L1 regularisa-
tion parameter that controls sparsity. L1 regularisation penalizes the model coefficient absolute
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values and thereby shrinks coefficients deemed to be insignificant towards 0.

In order to solve the minimisation problem in (117) every time a new data sample is made avail-
able, it should be made computationally efficient. Additionally, we want to control the level of
adaptivity via a forgetting factor as also done by (Messner and Pinson, 2018), (Møller et al., 2008)
and (Pinson and Madsen, 2012). By giving less weight to older data, the model coefficient es-
timates better reflects the recent dynamics in the time-series data. Introducing an exponential
forgetting factor ν into (117) results in

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1βs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

∥βs,t∥1 (118)

where ν ∈]0, 1]. A value of 1 results in no forgetting while decreasing values increase the amount
of forgetting. Values slightly less than 1 are generally preferred. ν may be optimised in practice
through, e.g., cross-validation.

The standard ADMM builds on the dual-ascent method, which is used to solve optimisation prob-
lems where the objective function is separable, by splitting the complete model coefficient vec-
tor into sub-vectors. Our problem is naturally separable since each wind farm operator has
unique explanatory variables as,τ−1 and related model coefficients βs,t in (118). The optimi-
sation problem is transformed into an appropriate ADMM sharing form by adding the auxiliary
vector zs,t to (118). The constrained optimisation problem then reads

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1zs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

∥βs,t∥1

subject to βs,t − zs,t = 0, ∀s ∈ ΩS

(119)

The ADMM uses the augmented Lagrangian to solve the constrained optimisation problem with
respect to βs,t and zs,t, by updating the variables in an alternating fashion. For a detailed
description of the ADMM and its application in distributed networks, the reader is referred to
(Boyd et al., 2010). When following the standard ADMM to solve (119), the central agent may be
able to retrieve the explanatory variables of all contracted agents. Thus, the data privacy of the
contracted agents is violated. In the offline ADMM for distributed learning of (Pinson, 2016a), the
explanatory variables as,τ−1 of each agent are protected in each step of the algorithm naturally
by being multiplied by the respective βs,t. Taking this as inspiration, our idea is to introduce the
encryption matrix Ms ∈ RL,L and multiply it by as,τ−1 whenever it appears. We achieve this by
changing the affine constraint in (119) into

βs,t −Mszs,t = 0, ∀s ∈ ΩS (120)

and additionally adjusting the objective function by replacing the term as,τ−1zs,t with as,τ−1Mszs,t.
As a requirement, each encryption matrix must be non-singular and chosen by each agent
privately. This eventually yields the encrypted version of the constrained optimisation problem
(119), i.e.,

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1Mszs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

∥βs,t∥1

subject to βs,t −Mszs,t = 0, ∀s ∈ ΩS

(121)

The augmented Lagrangian of (121) in its scaled form is then written as

Lρ(βt, zt,ut) =
1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1Mszs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

∥βs,t∥1

+
ρ

2

∑
s∈ΩS

∥βs,t −Mszs,t + us,t∥2
(122)
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where ρ > 0 is a penalty parameter and us,t are the dual variables for the constraints in (121).
The OADMM then performs the minimisation of the augmented Lagrangian by sequentially opti-
mising for βs,t and zs,t while updating the dual variables us,t as part of the dual ascent algorithm.
By optimising for βs,t and zs,t individually it is possible to take advantage of the separability of
(122) with respect to all βs,t ∈ ΩS .

V.3.2 Recursive updates of parameters

i. Central agent updates

To perform an update at time t, let us first focus on the master problem of the central agent.
The central agent first observes the true power production ysj ,t and subsequently derives the
prediction error ysj ,t − ŷsj ,t|t−1. The augmented Lagrangian is then minimised with respect to
the auxiliary variable z. The minimisation is written as a parameter update which is carried out
exclusively by the central agent. To obtain the update equations we first define

βt−1 =
[
β⊤
s1,t−1, . . . ,β

⊤
sS ,t−1

]⊤
, (123a)

zt−1 =
[
z⊤
s1,t−1, . . . ,z

⊤
sS ,t−1

]⊤
, (123b)

ut−1 =
[
u⊤
s1,t−1, . . . ,u

⊤
sS ,t−1

]⊤
, (123c)

at−1 = [as1,t−1, . . . ,asS ,t−1] , (123d)

the model coefficient estimates β̂t at time t, and the block-wise diagonal matrix

M = diag (Ms1 , . . . ,MsS ) (124)

Differentiating the augmented Lagrangian with respect to zt yields

∂Lρ(β̂t, zt,ut)

∂zt
=

t∑
τ=1+L

νt−τ (aτ−1M)
⊤ (

aτ−1Mzt − ysj ,t
)
− ρM⊤

(
β̂t−1 −Mzt + ut−1

)
(125)

By writing

Ht =

t∑
τ=1+L

νt−τ (aτ−1M)
⊤
(aτ−1M) (126)

and

pt =

t∑
τ=1+L

νt−τ (aτ−1M)
⊤
ys,t (127)

the auxiliary vectors are updated by equating (125) to 0 and then solving for zt. Hence, the
OADMM requires (

Ht + ρM⊤M
)
zt = pt + ρM⊤

(
β̂t−1 + ut−1

)
(128)

to be solved for zt. Before solving the equation system, the covariance structures Ht and pt are
efficiently updated via the recursions

Ht = νHt−1 +
(
aτ−1M)⊤(aτ−1M

)
(129a)

pt = νpt−1 + (aτ−1M)
⊤
ys,t (129b)

Both covariance structures comprise the memory of the recursive updating process, controlled
by the forgetting factor ν.

After the central agent has updated the auxiliary vectors, it shares them via the fusion centre
with its contracted agents. This is considered to be a broadcasting operation where the central
agent distributes local variables within the network.
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ii. Contracted agent updates

After each contracted agent receives its respective auxiliary vector zs,t, all S agents update
their dual variables in parallel with the recursion

us,t = us,t−1 + β̂s,t−1 −Mszs,t (130)

where the update is part of the dual ascent method.

Next follows the update of β̂t where the augmented Lagrangian is separable across all β̂s,t ∈
ΩS . Hence, the update is also carried out in parallel. Due to the L1-norm of the LASSO the
Lagrangian is not differentiable with respect to β̂t, though sub-differentiable. The final update
then reads

β̂s,t = Sλ/ρ (Mszs,t − us,t) (131)

where Sκ (c) is a soft-thresholding operator

Sκ (c) =


c− κ if c > 0 and κ < |c|
c+ κ if c < 0 and κ < |c|
0 if κ > |c|

(132)

which is applied element-wise to the input Mszs,t − us,t.

iii. Back to the central agent

After each agent updates their model coefficient estimates β̂s,t, they compute the partial pre-
diction as,tβ̂s,t with the latest explanatory variables. Besides sharing the partial prediction with
the central agent, due to the z-update the algorithm also requires each contracted agent to
share as,tMs and M⊤

s

(
β̂s,t + us,t

)
with the central agent. M⊤

s Ms are also required by the cen-
tral agent but only have to be shared once.

The last step before obtaining the next prediction requires the central agent to sum all partial
predictions, i.e.

ŷsj ,t+1|t =
∑
s∈ΩS

as,tβ̂s,t (133)

Because the OADMM requires each contracted agent to share the prior stated vectors and
scalar with the central agent, the central agent has access to L2 + L + 1 equations for each
contracted agent and time stamp. The central agent cannot retrieve the elements of as,t be-
cause the obtained equations contain 2(L2 + L) unknowns. Therefore, the data privacy of the
contracted agents is protected. Besides protecting the data of each wind farm operator, the
OADMM requires only a single bidirectional data exchange between the central agent and
its contracted agents. Taking into consideration that only low-dimensional vectors and matri-
ces are exchanged, the algorithm is efficient communication-wise. The pseudocode of the
OADMM’s final version is presented in Algorithm 3.
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Algorithm 3 Online ADMM

1: Central agent decides on λ, ρ, ν and L. Initialize β̂s,0, zs,0 and us,0 for s ∈ Ωs, H0, P0 and t to be 0. To
build M⊤M , contracted agents share M⊤

s Ms with the central agent j.
2: while agents want to perform distributed online learning do
3: t := t+ 1
4: ysj ,t is revealed to the central agent
5: Ht := νHt−1 + (at−1M)⊤ (at−1M)
6: pt := νpt−1 + ysj ,t (at−1M)
7: Central agent updates zt−1 and distributes local values to contracted agents
8:

(
Ht + ρMTM

)
zt = pt + ρM⊤(β̂t−1 + ut−1)

9: [zs1,t, ..., zsS ,t] := zt

10: for s ∈ Ωs do
11: us,t := us,t−1 + β̂s,t−1 −Mszs,t

12: β̂s,t := Sλ/ρ (Mszs,t − us,t)
13: Agent s uses latest observation ys,t to form as,t

14: ỹs,t+1|t := as,tβ̂s,t

15: share ỹs,t+1|t, as,tMs and M⊤
s

(
β̂s,t + us,t

)
with central agent

16: end for
17: ŷsj ,t+1|t :=

∑
s∈Ωs

ỹs,t+1|t

18: Central agent j stacks local as,tMs and M⊤
s

(
β̂s,t + us,t

)

19: atM := [as1,tMs1 , ...,asS ,tMsS ]

20: M⊤
(
β̂t + ut

)
:=

[
M⊤

s1

(
β̂s1,t + us1,t

)
, ...,M⊤

sS

(
β̂sS ,t + usS ,t

)]

21: end while

Considering all 5 required algorithm parameter updates, due to their low complexity it is ex-
pected that the β-, u- and covariance structure updates can be performed efficiently and
quickly. However, the z-update is more expensive because a linear system is solved which grows
linearly with the number of agents S and the order of the AR process L. Therefore, for large-
scale applications with hundreds or thousands of contracted agents the z-update becomes
time-intensive. This motivated us to develop a computational-wise lighter algorithm which can
perform all parameter updates quickly in very large learning networks as well.

V.4 Adaptive Distributed MIrror Descent Algorithm made
Sparse (Adaptive D-MIDAS)

In the following, we first present basic concepts about stochastic gradient descent algorithms,
which are of relevance to the proposal of an online distributed learning algorithm. A flowchart
for the resulting Adaptive Distributed MIrror Descent Algorithm made Sparse (abbreviated to
Adaptive D-MIDAS) is presented in Figure 41, and a detailed algorithm is available in Algorithm 4.

V.4.1 Basics of the SMIDAS

Stochastic gradient descent algorithms provide a great platform for designing computationally
inexpensive online distributed learning methods. We derive in the following an algorithm that is
greatly influenced by the work of (Shalev-Shwartz and Tewari, 2011). The authors proposed the
Stochastic MIrror Descent Algorithm made Sparse (SMIDAS) for solving problems of the form

min
βs1

,...,βsS

C (βs1 , . . . ,βsS ) + λ
∑
s∈ΩS

∥βs∥1 (134)
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Figure 41 Flowchart for the Adaptive Distributed MIrror Descent Algorithm made Sparse (Adaptive D-MIDAS)
approach for online distributed learning applied to wind power forecasting.

where in regression problems C is commonly the squared loss

C (βs1 , . . . ,βsS ) =

T∑
τ=1+L

(∑
s∈ΩS

as,τ−1βs − ysj ,τ

)2

(135)
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The proposal of (Shalev-Shwartz and Tewari, 2011) is motivated by previous work on stochastic
optimisation for L1-regularized problems. First, (Duchi et al., 2008) described an algorithm which
replaces the L1 regularisation term in (134) with the constraint ∥

∑
s∈ΩS

βs∥1 ≤ B and then uses a
stochastic gradient projection procedure to estimate the model coefficients. Second, (Langford
et al., 2009) introduced a stochastic gradient descent algorithm where sparse solutions are ob-
tained by truncating the model coefficients, i.e., elements in the model coefficient vector that
cross 0 during a gradient step are truncated to 0. The runtime of both algorithms might grow
in some situations in a quadratic way with the dimension of the feature space even though the
optimal coefficient vector is very sparse (Shalev-Shwartz and Tewari, 2011). Mirror descent al-
gorithms instead achieve a runtime which is linear in the dimension of the feature space of the
problem (Beck and Teboulle, 2003). This makes them particularly suitable for high-dimensional
learning. However, they do not necessarily yield sparse solutions. In a nutshell, the SMIDAS uses
mirror descent updates in combination with the truncation method of (Langford et al., 2009).
Hence, the SMIDAS achieves a superior runtime compared to the algorithms of (Duchi et al.,
2008) and (Langford et al., 2009) while still yielding sparse solutions. Based on these properties
we use the SMIDAS as a starting point for the proposal of an online distributed learning approach.

In the following, we first apply the SMIDAS to learn the time-invariant model coefficients of (134).
This will facilitate the understanding of the subsequent derivation of our algorithm for learning
time-varying model coefficients in a distributed setting.

V.4.2 Batch estimation with SMIDAS

Like most gradient-based optimisation methods, the algorithm in (Langford et al., 2009) updates
only one weight vector β every iteration. Mirror descent algorithms are conceptually different
because they maintain two weight vectors, the primal vector β and the dual vector θ. The mirror
descent algorithm was first derived in (Nemirovski and Yudin, 1983), while a new derivation is pre-
sented in (Beck and Teboulle, 2003). We recommend both works for a more detailed description
of the algorithm.

The two weight vectors are linked via the transformation θ = f(β), where f is a link function.
From the derivation in (Nemirovski and Yudin, 1983) and under the right conditions, f is invertible.
Hence, the inverse transformation β = f−1(θ) exists. In (Shalev-Shwartz and Tewari, 2011) a p-
norm link function is used, which writes

βn = f−1
n (θ) =

sign (θn)|θn|p−1

∥θ∥p−2
p

(136)

with

∥θ∥p =
(∑

|θn|p
) 1

p

(137)

and θn being the nth element in θ.

After this initial description of the mirror descent algorithm, let us apply the SMIDAS to learn the
time-invariant model coefficients of (134), in a centralised setup where the central agent receive
the explanatory variables from all its contracted agents.

At each iteration k, the algorithm uniformly samples a training example i ∈ {1 + L, . . . , T}. Then,
the gradient of the squared loss function C is estimated with

∇C
(
β̂
(k−1)
1 , . . . , β̂

(k−1)
S

)
= 2

(∑
s∈ΩS

as,i−1

)⊤(∑
s∈ΩS

as,i−1β̂
(k−1)
s − ysj ,i

)
(138)

where β̂
(k−1)
s are the estimated model coefficients of the previous iteration and agent s. Next,
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the estimated gradient is used in

θ̃(k)
s = θ(k−1)

s − η∇C
(
β(k−1)
s

)
, ∀s ∈ ΩS (139)

to update the dual variables, where η > 0 is a fixed learning rate. The SMIDAS then applies the
truncation step

θ
(k)
s,j = sign

(
θ̃
(k−1)
s,j

)
max

(
0, |θ̃(k−1)

s,j | − ηλ
)
, ∀j ∈ {1, . . . , L},∀s ∈ ΩS (140)

where the regularisation strength λ pulls the dual variables towards 0. As soon as a coefficient
crosses 0, it is truncated to 0. This procedure is conceptually the same as in (Langford et al., 2009),
though applied to the dual variables of the mirror descent instead of to the primal variables of
the stochastic gradient descent. The last step of the SMIDAS applies the p-norm link function

β̂
(k)
1 , . . . , β̂

(k)
S = f−1

(
θ
(k−1)
1 , . . . ,θ

(k−1)
S

)
(141)

to update the model coefficient estimates.

Equations (138) to (141) are applied until a defined convergence criterion is reached. Depend-
ing on the dataset size and convergence criterion, the algorithm can sample a single training
example multiple times.

V.4.3 Online distributed MIDAS

The motivation to use the SMIDAS as the basis for our distributed online algorithm comes from the
separability of (138) in the explanatory variables and the possibility of obtaining sparse model
coefficient vectors through the truncation step (140). By choosing the loss function C as the
quadratic criterion, the term

∑
s∈ΩS

as,i−1β̂
(k−1)
s − ysj ,i in (138) is the 1-step ahead forecast error

of iteration k. Hence, if the central agent shares the forecast error for its site with the contracted
agents, each agent is able to estimate their share of the gradient locally. Given the remaining
steps of the SMIDAS, this allows, with a few modifications only, the obtainment of a distributed
online algorithm where the privacy of each agent is protected. However, one might argue that
the forecast error is a private information for the central agent, who hence is not willing to share
it. In situations where the central agent is not willing to share forecast errors with competitors,
we propose the following distributed learning network design. When sharing the forecast error
through a fusion centre with contracted agents, the forecast error is anonymised such that the
contracted agents cannot infer the identity of the central agent, and hence cannot identify
the location of the related site. The anonymisation of the central agent would further require
that potential compensations for the participation in a learning agreement are handled by the
fusion centre operator.

To obtain a learning algorithm which is able to track time-varying model coefficients, our algo-
rithm does not randomly sample training examples. Instead, the algorithm estimates the gradi-
ent for a sample only once as observations arrive sequentially. Therefore, the index t replaces i
in all previous SMIDAS formulations. We further change the name of the algorithm to MIDAS be-
cause we remove the stochasticity by not using random samples. Last, we remove the iteration
counter k (t is the equivalent in online learning) from all formulations. Estimating the gradient
of a sample only once is fundamentally different from the OADMM where the cumulative loss
is minimised over all past observations. This means that, when updating the model coefficients,
all past information is implicitly considered. Consequently, when using the distributed MIDAS
version, we expect a greater variance in the estimated model coefficients.

Starting from the willingness of the central agent to share its forecast error rt|t−1 = ŷsj ,t|t−1 − ysj ,t
with the contracted agents at time t, we propose the following distributed MIDAS. Instead of
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sharing the forecast error directly with the contracted agents, it is shared through a fusion centre.
This is considered to be the first broadcasting step. Each agent then updates their local dual
variables by taking a step into the direction of the negative estimated gradient while controlling
the step size with the learning rate η. The update is performed by all agents in parallel and is
written as

θ̃s,t = θs,t−1 − ηas,t−1rt|t−1 (142)

The SMIDAS subsequently uses the element-wise truncation (140). A simulation study revealed
that a single sample evaluation does not yield significant benefits in terms of forecast accuracy.
Furthermore, we realised that the p-norm link function is sufficient to shrink unimportant model
coefficients to 0, though the estimated model coefficients never became exactly 0. Therefore,
we dismissed the option to obtain sparse coefficient vectors by neglecting the truncation step
in our distributed version (i.e., θ̃s,t is hereafter replaced by θs,t). We subsequently obtain an
algorithm that has one less hyperparameter. However, the inability to shrink unimportant model
coefficients to 0 is a setback if compared to the case of OADMM.

The next step of the algorithm utilises the fusion centre, with which all agents share their dual
variables. This allows the computation of the denominator of the link function with

γt = ∥θt∥p−2
p (143)

where θt is the assembly of all local dual vectors θs,t ∈ ΩS and p is a hyperparameter. This step
marks the first gathering step, even though the local variables are not gathered by the central
agent. The norm γt is consequently shared with all agents such that they can apply the link
function to their respective dual variables. This is the second broadcasting step of the algorithm.
The final update is the element-wise application of the link function

β̂s,t =
sign (θs,t)|θs,t|p−1

γt
(144)

The aforementioned shrinkage behaviour of the link function is controlled via the hyperparame-
ter p, where a greater value in p applies a greater shrinkage to all β̂s,t’s.

After obtaining re-estimated model coefficients, each agent calculates a new partial prediction
and shares it through the fusion centre with the central agent, who eventually calculates the
next prediction for its site. The final exchange of information accounts for the second gathering
step. In total the algorithm requires 2 broadcasting and 2 gathering steps for each t.

V.4.4 Extending the distributed MIDAS

With the distributed MIDAS version, the fusion centre operator could have the possibility to re-
trieve the information about local explanatory variables. This possibility exists since the access to
all dual variables and the forecast errors results in an equal amount of equations and unknowns.
Therefore, additional measures are required to protect the data of the wind farm operators. Due
to the different structure of the algorithms, introducing an encryption matrix as in the OADMM
was unsuccessful. Our proposal is therefore to encrypt the forecast errors using an encryption
technique such as AES (Li et al., 2009) and then share it through the fusion centre with the con-
tracted agents. This requires the direct exchange of the decryption key with the contracted
agents before all agents start performing online learning. Because the fusion centre operator
does not have access to the forecast error anymore, it has more unknowns than equations to
solve. Hence, it is not possible to retrieve the explanatory variables with sufficient accuracy. In
a setting with anonymized forecast errors, the central agent still shares the decryption key with
its contracted agents. However, the central agent does not reveal its identity and therefore the
contracted agents cannot obtain information about the location of the central agent’s site.

In the presented algorithm, named Distributed MIDAS (D-MIDAS), the learning rate η controls the
general speed with which the algorithm approaches the global optimum of the minimisation
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problem within a given period. When η is large, the global optimum is approached faster but
at the same time the estimated model coefficients experience a greater variance between
consecutive time stamps. This statement is derived from (142), where a large forecast error
translates directly to a significant change in the dual variables, and subsequently to a notable
change in the model coefficients. Ideally, in stationary periods the algorithm requires smaller η
values compared to non-stationary periods. Taking into account that all algorithm parameter
updates are computationally cheap, our proposal is to learn multiple AR-X models in parallel
while varying the learning rate η between the models.

Based on the past performance of each model, the algorithm adaptively chooses which model
to use for the next prediction. This can considered as adaptive learning, where in stationary
periods a small η is used, and in non-stationary periods a larger η is applied instead. We use the
cumulative absolute error (CAE) with decaying weights

CAE
(η)
t = µCAE

(η)
t−1 + |ŷ(η)sj ,t|t−1 − ysj ,t| (145)

to evaluate the performance of each model, where µ allows the control of the level of decay.
The superscript η indicates from which model the prediction is coming from. We name this ex-
tension Adaptive D-MIDAS and the pseudocode is shown in Algorithm 4.

The computational complexity and the amount of exchanged data increases linearly with the
number of models that the Adaptive D-MIDAS learns in parallel. Concerning the amount of
exchanged data, the Adaptive D-MIDAS exchanges an almost equal amount of data as the
OADMM when learning two models in parallel. However, the Adaptive D-MIDAS requires two
bidirectional data exchange steps whereas the OADMM requires only one. The additional data
exchange step comes from the requirement to compute the denominator of the link function
at the fusion centre. Based on this insight we obtain a communication-reduced version of the
algorithm by using the denominator and dual variables of the previous time stamp to update
the model coefficients via the link function. Consequently, it is no longer necessary to send
the dual variables to the fusion centre before updating the weight vector. The denominator
of the link function can instead be calculated after the central agent has calculated the next
prediction for its site. With this strategy that reduces the overall time between obtaining the
newest observation and calculating a new prediction with re-estimated model coefficients, it is
expected that a negative impact on forecast accuracy will be observed. However, as the later
following case study using real-world data shows, the reduction in forecast accuracy is small.
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Algorithm 4 Adaptive D-MIDAS

1: Central agent creates decryption key K∗, selects a set of learning rates (collected in Ωη) and shares
both quantities with its contracted agents.

2: Initialize t and β̂
(η)
s,0 , θ(η)

s,0 for s ∈ Ωs and η ∈ Ωη to be 0. Additionally, initialize CAE
(η)
sj for η ∈ Ωη to be 0.

Central agent selects µ and p but only shares p with the fusion centre and contracted agents.
3: while agents want to perform distributed online learning do
4: t := t+ 1
5: ysj ,t is revealed to the central agent
6: for η ∈ Ωη do
7: r

(η)

t|t−1 := ŷ
(η)

sj ,t|t−1 − yt,sj

8: CAE
(η)
t = µCAE

(η)
t−1 + |r(η)t|t−1|

9: end for
10: Central agent encrypts forecast errors with K(·) and shares them through the fusion centre with its

contract agents
11: for s ∈ Ωs do
12: Agent s decrypts forecast errors with K∗(·)
13: for η ∈ Ωη do
14: θη

s,t := θ
(η)
s,t−1 − η · as,t−1r

(η)

t|t−1

15: end for
16: Transmit list of dual vectors to fusion centre
17: end for
18: Fusion centre operator computes denominators of link function, γ(η)

t

19: for η ∈ Ωη do
20: θ

(η)
t :=

[
θ
(η)
s1,t

, ...,θ
(η)
sS ,t

]

21: γ
(η)
t := ∥θ(η)

t ∥p−2
p

22: end for
23: Fusion centre operator shares γ(η)

t with all agents
24: for s ∈ Ωs do
25: Agent s uses latest observation ys,t to form as,t

26: for η ∈ Ωη do

27: ∀ k, β̂
(η)
s,t,k :=

sign (θ
(η)
s,t,k

)|θ(η)
s,t,k

|p−1

γ
(η)
t

28: ỹ
(η)

s,t|t−1 := as,tβ̂
(η)
s,t

29: Each contracted agent shares partial predictions through fusion centre with central agent
30: end for
31: end for
32: for η ∈ Ωη do
33: ŷ

(η)

sj ,t|t−1 :=
∑

s∈Ωs
ỹ
(η)

s,t|t−1

34: end for
35: Central agent selects final prediction according to minη MAE

(η)
sj

36: end while

V.5 Simulation study

A study on simulated data investigates the ability of both algorithms to estimate time-varying
model coefficients and the related computational costs. We only consider the standard Adap-
tive D-MIDAS and not its communication-reduced version since the lagged calculation of the
denominator γt was verified to have only a small impact on the estimated model coefficients.
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V.5.1 Tracking of time-varying coefficients

We first generate a multivariate time series with time-varying coefficients of the form

yt = Ayt−1 + ϵt (146)

where ϵt is a vector of independent standard Gaussian noise with 0 mean and finite variance
(set to 0.1 in our experiments). Each simulated time series has 25 000 times steps. The coefficient
matrix A is further defined as

A =



0.9 0 0 0.2 0 0 0 0 0 0

0 0.8 0.1 0 0 0 0 0 0 0

0 0 0.85 0 0 0 0−0.15 0 0

0 0 0 0.75 0 0 0 0 0 0

0 0 0 0 a1 0.2 0 0 0 0

0 a2 0 0 0 0.9 0.2 0 0 0

0 0 0 0 0 0 0.85 0 0 0

0 0 0 −0.1 0 0 0 0.7 0 0

0 0 0 0 0 0 0 0 0.9 0

0 0 0 0 0.15 0 0 0 00.8



(147)

where a1 and a2 are time-varying coefficients (as illustrated in Figure 42). We performed a Monte-
Carlo simulation with 1 000 replicates to estimate the variance of â1 and â2. The hyperparameters
p and µ of the Adaptive D-MIDAS were set to 2.5 and 0.996, respectively. In this experiment we
used 6 evenly spaced (from 0.025 to 0.15) learning rates.

Figure 42 shows the temporal evolution of the mean, as well as the 5th and 95th quantiles of
the estimated coefficient distributions for a1 and a2. Both algorithms are able to track the time-
varying coefficients in expectation (the mean of the estimated coefficient distributions follows
the true values). However, some noticeable differences are observed between both algorithms.
First of all, the Adaptive D-MIDAS has a greater “burn-in” period, i.e., the number of samples
required to learn from before a fair approximation of the true coefficient value is reached. Sec-
ondly, the spread in the estimated model coefficients for the 1 000 replicates (represented by
the difference between both quantiles) increases for the Adaptive D-MIDAS when the true co-
efficients change. Contrary to this, the spread in coefficient estimation for the OADMM is either
constant or even decreases for changing true coefficient values. The increased spread for the
Adaptive D-MIDAS coefficient estimates is a consequence of the faster learning rate which is
required to keep track of the decreasing true coefficient value.

This can also be observed from Figure 43, which shows the average (over all 1 000 Monte-Carlo
replicates) learning rate of the Adaptive D-MIDAS. It reveals a clear relationship between the
spread in the coefficient estimates and the best-performing learning rate (based on (145)).

Thus, there is a clear trade-off for the Adaptive D-MIDAS between the variation in the estimated
model coefficients and the ability to track time-varying coefficients: when trying to achieve a
high degree of adaptivity, one has to pay the price of higher variation in the estimated coeffi-
cients.

A similar trade-off is observed for the OADMM, where the adaptivity is controlled by the forgetting
factor ν. When applying a smaller ν value, the algorithm becomes more adaptive but since
the effective training data length decreases the variance in the estimated coefficient increases.
However, the OADMM provides a better trade-off between adaptivity and estimated coefficient
variance due to the fact that it minimises the cumulative loss over all past observations. Thus,
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Figure 42 Coefficient estimates obtained through the Monte-Carlo simulation. Top row: Adaptive D-MIDAS,
bottom row: OADMM

Figure 43 Average learning rate of the Adaptive D-MIDAS across all 1 000 replicates. Left a1 right a2

occasional outliers in the form of large forecast errors have a smaller impact on the estimated
coefficients.

V.5.2 Computational costs

Besides assessing the ability of both algorithms to track time-varying model coefficients, a sim-
ulation study is performed to compare the computational costs. The study estimates the time
required by each agent and algorithm to calculate a new prediction after the central agent
obtain a new data sample. To show the expected better scaling properties of the D-MIDAS, we
estimated the computational time for an increasing learning network size of contracted agents.
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We again used simulated time series data that are generated with the previously introduced
approach. However, instead of creating an AR(1)-, we used an AR(4)-process. In this study we
performed online learning for 1 000 simulated time steps while recording the time it took to com-
plete each operation. To achieve comparability between the Adaptive D-MIDAS and OADMM,
the Adaptive D-MIDAS learned two models in parallel. For both algorithms, this resulted in an
almost equal amount of data that was exchanged within the learning network. The simula-
tion study was performed on a system with a i5-5200U CPU, 8 GB DDR3 RAM and a Windows 10
OS. Because both algorithms were used locally, we neglected the encryption and decryption
steps of the Adaptive D-MIDAS. Hence, the observed performance gap in computational speed
would decrease in case encryption was required to ensure data privacy.

Computational times are summarised in Figure 44. They were obtained by averaging the com-
putational time for each and every one of the 1 000 time steps. The Adaptive D-MIDAS is faster
than the OADMM overall. Furthermore, the algorithm shows a better scaling behaviour with re-
spect to the learning network size. This is expected since, at each and every time t, the OADMM
needs to solve a linear system of equations. Depending on the solving technique, complexity
grows at least quadratically with the number of equations. The Adaptive D-MIDAS scales better
because its updates are simple linear operations.

Figure 44 Average time (over 1 000 time steps) required by each agent to complete its tasks at a given time
step, for both OADMM and Adaptive D-MIDAS approaches, as a function of total number of agents S.

V.6 Case study

Our distributed and online learning algorithms were benchmarked on a real-world dataset of
wind power generation for 311 sites. The dataset is a subset of the one used in (Girard and
Allard, 2013). The temporal resolution is of 15 minutes and our subset covers 40 000 time steps,
corresponding to 416 days. Figure 45 shows the location of the sites in Western Denmark. Many
sites are located in close proximity to each other. This allows accounting for relevant spatial-
temporal patterns when forecasting wind power generation for short lead times. To highlight the
benefits of online learning, we benchmarked the forecasts from our online algorithms against
those that would be otinaed from L1-regularized AR-X models with time-invariant coefficients.
The model coefficients were then estimated on the training part of the dataset only.
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Figure 45 Location of sites in Western Denmark.

The benefits of exploring spatial-temporal patterns in wind power generation data have been
shown for a different subset in (Messner and Pinson, 2018). The authors showed that high-
dimensional regularised AR-X models outperform univariate AR models which only use on-site
power measurements. All model coefficients were estimated in a time-varying fashion. Based
on these results, we allowed ourselves to disregard univariate AR models with time-varying coef-
ficients in our case study.

V.6.1 Data preprocessing

First, the raw data was normalised by dividing the time series of each site by the respective
nominal capacity. Write xs,t the normalised wind power generation observed at time t and for
site s. In addition, a logit-Normal transformation of the original time-series was considered, as
proposed by (Lau and McSharry, 2010), i.e., at each and every time t and site s,

ys,t = ln

(
xs,t

1− xs,t

)
, ∀s, t . (148)

To account for the bound effects, a coarsening approach was used (Pinson, 2012a), for which
values of 0 and 1 are set to 0.01 and 0.99, respectively.

V.6.2 Case study setup

The data is split into two equal sub-periods of 20 000 time steps. The first part is used for train-
ing and hyperparameter optimisation, and the second for genuine out-of-sample forecast ver-
ification. Over the first period, the hyperparameters of all algorithms were optimized with a
grid search scheme. After identifying suitable hyperparameters for the Adaptive D-MIDAS, the
same hyperparameters were then applied to its communication-reduced version. The LASSO’s
L1-regularisation parameter λ for the batch AR-X models was determined through 1-fold cross-
validation. For both approaches, the forgetting factors are to be seen as variables that control
how much of the past data is used for estimation. Hence, optimising these forgetting factors
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through cross-validation is to be seen as equivalent to determining an optimal training set size in
the case of batch learning.

For a given site s, the Mean Absolute Error (MAE),

MAE =
1

T

T∑
t=1

|ys,t − ŷs,t| (149)

and the Root Mean Squared Error (RMSE),

RMSE =

√√√√ 1

T

T∑
t=1

(ys,t − ŷs,t)
2 (150)

were used as performance metrics. To further quantify the performance of each model, the skill
score I

IS = 1− SModel

SPers
(151)

was used to assess the improvement over persistence forecasts (the latest observed power mea-
surement is used as the next prediction), where S could be the metrics MAE or RMSE.

Owing to the large number of wind farms in the dataset, hyperparameter optimisation was per-
formed for all wind farms at once, instead of for each site individually. A set of hyper-parameters
was evaluated by considering the skill score distribution that contained the scores of all 311 sites.
The median, the lower quartile and the inter-quartile range were used here as decision crite-
ria. It was further decided to perform multi-step-ahead forecasting with up to 4 steps ahead.
In general, different strategies exist for multi-step-ahead forecasting, where a good overview is
presented in (Ben Taieb et al., 2012). The most common approaches are either the iterative
calculations of 1-step-ahead predictions or training separate models for each lead time. The
iterative calculation of 1-step-ahead predictions results in the accumulation of forecast errors.
Therefore, we used the direct approach and trained models for each lead time.

The hyperparameters of the Adaptive D-MIDAS and the batch AR-X model were optimized for
each of the 4 lead times. Based on the significantly longer simulation times, the hyperparameters
of the OADMM were optimized for 1-step-ahead predictions only. The selected hyperparameters
were then applied for all other lead times. Due to the observed longer burn-in period of the
Adaptive D-MIDAS, the performance metrics were calculated for both online algorithms only for
the time steps between t =10 000 and t =20 000.

To obtain predictions for all sites of the dataset, each site took the role of the central agent once,
while acting as a contracted agent in the other 310 simulations (i.e., for all other sites). Therefore,
to obtain predictions for all sites and a single lead time, in total 311 AR-X models were estimated.

V.6.3 Results

Focusing first on hyperparameter optimisation, Figure 46 gives an example of the results obtained
by optimizing the forgetting factor µ for the Adaptive D-MIDAS approach, when performing 1-
step ahead forecasting. The boxplot shows the improvement over persistence forecasts for all
311 sites, as a function of the forgetting factor µ. Each box extends from the lower to the upper
quartile (denoted Q1 and Q3, respectively), where the horizontal line indicates the median of
the obtained RMSE skill score distributions. The maximum length of the whiskers is set to 1.5 times
the interquartile range (Q3-Q1). The upper whisker then indicates the last sample which is found
to be below or equal to the threshold of Q3 + 1.5(Q3 − Q1). If a data point of the distribution is
found outside this range, it is classified as an outlier and marked with a circle. The same concept
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Figure 46 RMSE skill score of the Adaptive D-MIDAS with reference to the persistence forecast for 1-step
ahead forecasts, as a function of the forgetting factor µ. The skill score values are computed for the time
stamps t = 10000 to t = 20000.

applies to the lower whisker, which marks the first sample that is found to be within the range of
Q1 − 1.5(Q3 −Q1).

A µ value of 0.95 performed slightly better than the remaining selected values when considering
the aforementioned decision criteria. Therefore, this value was subsequently selected when
performing online learning to estimate the performance on unseen data. The same approach
was followed when tuning the other hyperparameters.

After finding suitable hyperparameters for both online algorithms, online learning was performed
on the complete dataset. In contrast, the batch AR-X model coefficients were estimated over
the first 20 000 time steps and then used to generate predictions over the remaining 20 000
time steps without re-estimating the model coefficients. Results are collated in Figure 47, for all
approaches considered and for all sites, again with boxplots for skill score values (both in terms
of RMSE and MAE).

Overall, all online distributed learning algorithms outperform the batch learning one (LASSO es-
timation in AR-X models), with the advantage that no data from contracted agents is actually
shared with the central agents. A paired t-test supported the statistical significance by reject-
ing the null hypothesis of equal means at the 0.05 significance level. The number of outliers
for the batch LASSO additionally emphasises the strength of online learning because the poor
performance of batch estimation can be explained by the non-stationarity of the wind power
generation time series. Hence, there are significant differences between the time-varying coef-
ficients throughout the value period, and the coefficients estimated over and fixed at the end of
the training period. Furthermore, when computing the bias it was observed that all forecasting
models exhibit negligible bias values (not shown here).

The results further show that OADMM, despite being computationally more expensive, outper-
forms the Adaptive D-MIDAS for all lead times and skill scores. A paired t-test also supported the
statistical significance of the results here. In addition, the performance gap increases for further
lead times. This may be due to the structure and workings of both online algorithms. Indeed, the
OADMM minimises the cumulative loss over all past observations where the covariance struc-
tures Ht and pt carry the information of all previous samples. By varying the applied forgetting
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Figure 47 RMSE (top row) and MAE (bottom row) skill scores for the online distributed and batch learning
approaches for different lead times. The skill score values are computed over the evaluation period, from
t = 20000 to t = 40000. The dots indicate the mean of the skill score distributions.

factor the number of past samples that are effectively used to update all algorithm parame-
ters is controlled. As a result, even when a set of successive large forecast errors are observed,
the estimated model coefficients are less subject to variations. The Adaptive D-MIDAS on the
other hand does not utilize covariance structures to estimate model coefficients. Instead it uses
the estimated gradient of the current squared loss between the observation and prediction to
re-estimate the model coefficients. Therefore, large forecast errors directly translate to notice-
able variations in the estimated model coefficients. A resulting shortcoming may be that the
algorithm could be highly sensitive to outliers and structural breaks in the time series. While for
1-step-ahead predictions the model coefficient update is performed right after, i.e., naturally 1
time step after the prediction is made, for greater lead times there is a time lag because one
must wait k steps to obtain the forecast error of a k-step-ahead forecast. This, paired with the
sensitivity with respect to large forecast errors, may explain the lower forecast accuracy of the
Adaptive D-MIDAS for further lead times. As mentioned earlier within the study on simulated
data, the OADMM deals essentially better with this condition since the covariance structures
carry an inertia whereby single or multiple large forecast errors do not affect the model coeffi-
cient estimates as much. Here it should be noted that this statement only holds for a sufficiently
large forgetting factor.

Finally, one can verify that the communication-reduced Adaptive D-MIDAS version (Acc. D-
MIDAS) does not perform significantly worse than the standard version. Thus, this version is an
alternative in applications where re-estimating the model coefficients as quickly as possible has
a high priority.
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V.7 Concluding Remarks

Two novel online distributed learning algorithms, the OADMM and Adaptive D-MIDAS, were pro-
posed for high-dimensional AR-X model coefficient estimation to be used in wind power fore-
casting. The distributed component of both algorithms enables the estimation of AR-X mod-
els without the necessity of sharing sensitive data, such as power measurements, directly with
other agents or entities. This enables competing wind farm operators to cooperate and col-
lectively improve the forecasts for their sites. On the other hand, the online component allows
the estimated model coefficients to follow the time-varying conditions of wind power genera-
tion time-series. Our main focus has been on distributed learning and forecasting for a class of
linear models. Obviously then, the quality of the forecasts obtained is linked to the relevance
of such linear models in practice. In view of the literature on short-term wind power forecast-
ing, AR-X models are highly relevant for the lead times and forecasting setups considered in
the paper. Some relevant generalisation could readily be considered e.g. to some types of
regime-switching models (Self-Exciting Threshold Auto-Regressive – SETAR, and Smooth Transition
Auto-Regressive – STAR). As long as the models involved are linear and separable, the methods
discussed in the paper could be used in a similar manner. More broadly though, generalisation
to nonlinear and more complex models may be more involved.

The OADMM relies on a LASSO-type objective function to estimate the coefficients of regularised
AR-X models, in combination with an exponential forgetting factor to control the level of adap-
tivity. The algorithm minimises at any time t the cumulative loss over all observed samples (up to
t), which requires the solving of a linear system of equations to update the algorithm parameters.
Due to the non-negligible time for solving large equation systems, the Adaptive D-MIDAS is sub-
sequently introduced. Owing to its design, all parameter updates are computationally cheaper
to obtain. The algorithm is based on a mirror descent method where the gradient of the cur-
rent squared forecast error is used to update dual variables. These are then mapped via a link
function to the AR-X model coefficients. In addition, an accelerated version of the Adaptive
D-MIDAS was proposed, i.e., a communication-reduced version. The algorithm achieves faster
model coefficient re-estimates by using the dual variables from the previous time stamp. We
verified that the impact on forecast accuracy is small.

A study on simulated data verified the ability of both algorithms to track time-varying model
coefficients. However, the OADMM approach brings a better trade-off between adaptivity and
limited variability of the estimated model coefficients, than the Adaptive D-MIDAS approach.
Owing to its design, by minimising the cumulative loss over all past samples, large forecast errors
do not directly cause large variations in the model coefficient estimates. The better controlla-
bility between adaptivity and the estimated model coefficient variance is the reason why the
OADMM achieves a better forecast accuracy than the Adaptive D-MIDAS in the case study
with a real-world dataset of 311 wind farms. The case study additionally confirmed that online
learning is superior to offline learning, as already supported by previous work, although based
on centralised learning algorithms.

Future works should address strategies to reduce the greater variability in the estimated model
coefficients of the Adaptive D-MIDAS. Since we only considered deterministic forecasting mod-
els, future works should investigate extensions of the online distributed learning algorithms for the
case of probabilistic forecasting. Then, besides other proposals for distributed online learning,
and to relax the assumption such that agents are willing to collaborate, truthfully and rationally,
it may be crucial to investigate federated learning and data markets. These new concepts may
incentivise and support improvements in forecast quality when relevant data and features are
distributed, both geographically and in terms of ownership.
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VI. Online forecast reconciliation in wind power pre-
diction

VI.1 Introduction

Large-scale deployment of renewable energy generation sources brings a wealth of opportuni-
ties and challenges. For forecasting especially, the fact that production sites are geographically
distributed, in a fairly dense manner, yields an observation network that can be exploited. This
eventually allows improving the accuracy of wind power forecasts by accounting for spatio-
temporal dependencies in the underlying processes, e.g. (Tastu et al., 2014). This effect was also
observed for the case of solar power forecasts (Bessa et al., 2015a), hence making the methods
proposed for wind power equally relevant for solar power generation. However, other chal-
lenges that were unforeseen (or possibly considered as futile) are being identified. In fact, since
many agents in power systems and electricity markets generate their own forecasts, at various
aggregation levels and independently of each other, these forecasts may end up not being co-
herent. For example, for a portfolio composed of two wind farms, the sum of the forecasts made
for these wind farms, individually, will not necessarily be equal to the forecasts readily made for
the portfolio. This lack of additive coherency is a challenge when forecasts are used as input to
decision-making problems in power system operation and electricity markets.

The issue of forecast reconciliation has already been identified in the statistical modelling and
forecasting literature for quite some time now, with the first work related to energy applications
described in (van Erven and Cugliari, 2015). Since then, a wealth of relevant works appeared,
including methodological contributions and applications, e.g. (Wickramasuriya et al., 2018).
Some were readily focused on the wind power forecasting application, as for the case of (Zhang
and Dong, 2018) for instance. In fact, reconciliation approaches for probabilistic forecasts were
also proposed, for both electric load (Ben Taieb et al., 2021) and wind power generation (Jeon
et al., 2019). Others have looked at novel approaches to temporal reconciliation for large-scale
electricity consumption (Nystrup et al., 2020). Distributed approaches to forecast reconcilia-
tion (Bai and Pinson, 2019), based on the Alternating Direction Method of Multipliers (ADMM),
allowed to prevent potentially sensitive information exchange between wind farm operators.
However, most of these approaches make unrealistic unbiasedness assumptions and overlook
the fact that the underlying stochastic processes and optimal reconciliation may be nonstation-
ary.

As a result, our objective is to propose a new online forecast reconciliation approach which
relaxes these assumptions and allows to adapt to changes in the underlying characteristics of
the stochastic processes. Specifically, we make the following contributions. First, we formulate
a new objective function for forecast reconciliation based on a multivariate regression problem
with equality constraints on the regression parameters. This leads to a batch multivariate least
squares estimator with equality constraints (MLSE). Then, we extend the MLSE estimator to the
online setting, and derive a recursive and adaptive estimator inspired by recursive least squares
(RLS) estimation with exponential forgetting, which we denote MRLSE. Finally, we prove that our
estimators guarantee the coherency property not only in-sample but also out-of-sample. In
other words, the out-of-sample forecasts will be coherent by design even though the objective
function only constrains the in-sample forecasts to be coherent.

The remainder of the paper is structured as follows. The forecast reconciliation problem is de-
scribed in Section VI.2. Our proposal for forecast reconciliation is described in Section VI.3, in
both their batch and online versions. Section VI.4 presents some experiments with Danish wind
data, while conclusions and perspectives for future work are gathered in Section VI.5.
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VI.2 Forecast Reconciliation

Let {Y ∗
s,t} (s = 1, . . . ,m, t = 1, . . . , T ) be the stochastic process for wind power generation,

with indices s and t for location and time, respectively, as well as corresponding realizations
y∗s,t. We denote the power observations for all m individual sites at a given time t as y∗

t =

[y∗1,t, . . . , y
∗
s,t, . . . , y

∗
m,t]

⊤.

VI.2.1 Defining a Hierarchy

Individual sites are organized in a hierarchy, where quantities at upper levels are obtained by
aggregating the quantities of the individual sites. The hierarchy has L levels and N total number
of nodes. S is the set of all nodes. Nl is the number of nodes at level l, as a subset Sl ⊂ S, such
that N =

∑L
l=1 Nl and S =

⋃L
l=1 Sl. The tuple (l, j) then uniquely identifies node j at level l. Nodes

at a lower level of the hierarchy are referred to as child nodes, and those at the lowest level (the
individual sites) are the bottom nodes. The number NL of bottom nodes is equal to the number
of individual sites m. An example of a 3-level hierarchy, based on 5 individual sites, is depicted in
Fig. 48.

Figure 48 Example of a 3-level hierarchy based on 5 individual sites, with S1 = {(1, 1)}, S2 = {(2, 1), (2, 2)}
and S3 = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)}.

If y∗
t are the observations at time t in the bottom nodes, the observations at all levels of the

hierarchy yt are given by
yt = Sy∗

t , ∀t , (152)

where S ∈ {0, 1}N×NL is a summing matrix defined as

S =



S1 ∈ {0, 1}N1×NL

S2 ∈ {0, 1}N2×NL

...

SL−1 ∈ {0, 1}NL−1×NL

INL


=

 A

INL

 , (153)
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and Sl ∈ RNl×NL is a matrix whose elements slij are 1 if the jth node of the bottom-level is a child
(or grand-child) of the ith node of level l, 0 otherwise. INL

is an identity matrix of dimension NL.
Thus, it has a block structure with a first block A ∈ {0, 1}(N−NL)×NL for the summing operations
to go up in the hierarchy and a second block being an identity matrix of size NL to copy the
elements of the bottom nodes.

For the example of Fig. 48, the summing matrix reads

S =



1 1 1 1 1

1 1 0 0 0

0 0 1 1 1

I5


. (154)

In parallel, consider that given a lead time k, forecasts are issued at time t for time t+k. The fore-
casts for all individual sites are denoted by ŷ∗s,t+k|t, with ŷ∗

t+k|t = [ŷ∗1,t+k|t, . . . , ŷs,t+k|t, . . . , ŷ
∗
m,t+k|t]

⊤.
Forecasts are also issued for all nodes of the hierarchy, individually and independently of each
other, and collated in the vector of forecasts ŷt+k|t.

VI.2.2 Additive Coherency and Reconciliation

Many agents in power systems and electricity markets generate their own forecasts at various
aggregation levels independently of each other. As a result, it is highly likely that one has

ŷt+k|t ̸= S ŷ∗
t+k|t, ∀t, k , (155)

meaning that the forecasts do not satisfy the hierarchical aggregation constraints, also called
additive coherency.

Definition 1 (additive coherency) The forecasts ŷt+k|t for a hierarchy defined by a summing ma-
trix S are said to be additively coherent if

ŷt+k|t = S ŷ∗
t+k|t ⇐⇒ H⊤ŷt+k|t = 0 , (156)

where

H⊤ =

[
I(N−NL) −A

]
. (157)

Note that the matrix H naturally depends on the structure of the hierarchy through the matrix A.
As we need one equality constraint per non-bottom node, this yields N−NL equality constraints.
The matrix H⊤ therefore is a (N − NL) × N matrix. For the specific case of the 3-level hierarchy
depicted in Fig. 48, we have

H⊤ =


1 0 0 −1 −1 −1 −1 −1

0 1 0 −1 −1 0 0 0

0 0 1 0 0 −1 −1 −1

 . (158)

Given some probably incoherent forecasts ŷt+k|t, the process of forecast reconciliation is de-
fined as the transformation of the forecast vector ŷt+k|t such that it is made additively coherent
(i.e., the equality is restored). For a review of the alternative approaches to forecast reconcilia-
tion, the reader is referred to (Athanasopoulos et al., 2016).
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Remark 1 Contrarily to the case of forecasts, power measurements are naturally additively co-
herent, since measurements for upper level of the hierarchy are obtained by directly using the
summing matrix S as in (152).

VI.3 Forecast Reconciliation with Multivariate Least Squares
Estimation

We propose a new forecast reconciliation method which involves solving a multivariate least
squares regression problem. A set of constraints on the coefficients are added to the objective
function to ensure coherent forecasts. By doing so, we relax the unbiasedness assumption of
existing reconciliation methods (Wickramasuriya et al., 2018), and we allow to use the wealth
of modern approaches for estimation in regression models including the online learning setting.
We first introduce a batch version of our method, then we derive an online version based on
recursive and adaptive estimation with exponential forgetting.

VI.3.1 Multivariate Least Squares Estimation

We model the observations at all nodes in the hierarchy as a linear combination of the corre-
sponding forecasts. Specifically, given lead time k, we consider the following regression model:

yt+k = Θ⊤
k ỹt+k|t + εt+k, ∀t , (159)

where Θk ∈ R(N+1)×N is a matrix of regression coefficients, ỹ⊤
t+k|t =

[
1 ŷ⊤

t+k|t

]
∈ R1×(N+1), and

εt+k a noise term with zero mean and finite variance.

In the batch setting, we are given a dataset composed of T pairs of forecasts and observations,
for a given lead time k. With our method, this dataset is used to estimate the regression coef-
ficients in (159). More precisely, we solve the following multivariate least squares problem with
equality constraints (MLSE):

Θ̂MLSE
k = argmin

Θ
||Yk − ŶkΘ||22 (160a)

s.t. ŶkΘH = 0 , (160b)

where Yk ∈ [0, 1]T×N and Ŷk ∈ [0, 1]T×(N+1) are given by

Yk =


y⊤
1+k

...

y⊤
T+k

 and Ŷk =


ỹ⊤
1+k|1

...

ỹ⊤
T+k|T

 . (161)

The constraint ŶkΘH = 0 ensures that the reconciled forecasts ŶkΘ are coherent as presented
in Definition 1. After estimating Θ̂MLSE

k , when a new forecast ŷt+k|t for all nodes of the hierarchy

is available, the vector of reconciled forecasts is obtained as
(
Θ̂MLSE

k

)⊤
ỹt+k|t.

For the MLSE problem in (160), assuming Ŷ⊤
k Ŷk is invertible, a closed-form solution can be readily

obtained following the developments in (Kubáček, 2007), as

Θ̂MLSE
k =

(
Ŷ⊤

k Ŷk

)−1

Ŷ⊤
k Yk (INL

−Ck) , (162)
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where INL
is an identity matrix of size NL and Ck is a matrix whose elements depend on the

structure of the hierarchy and on the variance of the forecast error, i.e.

Ck = H
(
H⊤ΣkH

)−1
H⊤Σk . (163)

The covariance matrix Σk needs to be estimated, possibly making some assumptions about its
structure, as for some other reconciliation approaches (Athanasopoulos et al., 2016). Looking at
(162), one observes that the MLSE estimator is a variant of the unconstrained multivariate Least
Squares one, with a projection given by (INL

−Ck),

Θ̂MLSE
k = Θ̂MLS

k (INL
−Ck) , (164)

with
Θ̂MLS

k = (Ŷ⊤
k Ŷk)

−1Ŷ⊤
k Yk. (165)

Based on the equality constraints in (160b), coherency is imposed for all T pairs of forecasts and
corresponding observations in the training dataset used to estimate the model parameters. This
does not ensure that those parameters will guarantee coherency of forecasts reconciled for
new data not seen in the training set (i.e., out-of-sample). The following Theorem shows that our
method has the nice property of implicitly reconciling out-of-sample forecasts.

Theorem 1 (reconciliation by design) By computing Θ̂MLSE
k using (162), for any new forecast (out-

of-sample) ŷt+k|t, the reconciled forecasts given by
(
Θ̂MLSE

k

)⊤
ỹt+k|t are additively coherent.

Proof Consider any set of forecasts ŷt+k|t for a hierarchy defined by the summation matrix S, and
corresponding matrix H. Based on the augmented vector of forecasts ỹt+k|t, one has

ỹ⊤
t+k|tΘ̂

MLSE
k H = ỹ⊤

t+k|tΘ̂
MLS
k (INL

−Ck)H . (166)

It then means that
ỹ⊤
t+k|tΘ̂

MLSE
k H = ỹ⊤

t+k|tΘ̂
MLS
k (H−CkH) . (167)

Considering the definition of Ck in (163), one has

H−CkH = H−H
(
H⊤ΣkH

)−1 (
H⊤ΣkH

)
(168a)

= H−HI(N−NL) = 0 . (168b)

This therefore yields
ỹ⊤
t+k|tΘ̂

MLSE
k H = 0 , (169)

for any forecast ŷt+k|t and whatever the chosen covariance matrix Σ. □

VI.3.2 Online Version of the Estimator

For most practical applications, it is beneficial to consider online estimation, i.e., involving recur-
sive estimation based on update equations and some form of history forgetting. This has the
benefit of accommodating nonstationarity of the underlying stochastic processes, while light-
ening the computational burden. The online version of our estimator is therefore abbreviated as
MRLSE (with ‘R’ for recursive).

At a given time t, the MRLSE estimator is defined as

Θ̂MRLSE
t,k = argmin

Θ
St(Θ) (170a)

s.t. ỹ⊤
i+k|iΘH = 0, ∀i ≤ t , (170b)
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where
St(Θ) =

1

2

∑
i≤t

λt−i
(
yt+k −Θ⊤ỹt+k|t

)2
, (171)

and where 0 < λ < 1 is a forgetting factor, generally in the range [0.95, 1]. It is often more
convenient to work with the equivalent number nλ of observations instead, defined as nλ =
(1− λ)−1.

In practice, as common for RLS estimators, the update equations for Θ̂MRLSE
t,k given the previous

value of the estimator, Θ̂MRLSE
t−1,k , and the new information available at time t, is obtained through

a Newton-Raphson step. An additional projection πH on the feasible space defined by (170b)
ought to be used, similarly to (Pinson and Madsen, 2012). This yields

Θ̂MRLSE
t,k = πH

{
Θ̂MRLSE

t−1,k − ∇St(Θt−1,k)

∇2St(Θt−1,k)

}
. (172)

After a little algebra, one obtains the update equations at time t as

Rt,k = λRt−1,k + ỹt+k|tỹ
⊤
t+k|t, (173a)

Θ̂MRLSE
t,k = Θ̂MRLSE

t−1,k + (173b)

R−1
t ỹt+k|t

(
yt+k(I−C)− ỹ⊤

t+k|tΘ̂
MRLSE
t−1,k

)
.

The MRLSE estimator naturally inherits its fundamental reconciliation property from the MLSE esti-
mator, i.e., reconciliation by design for any new (out-of-sample) forecasts.

VI.4 Application and Results

We compare our new forecast reconciliation method with the state-of-the-art approaches using
a real-world dataset from Denmark. After introducing our case-study, we present our forecast
verification framework and some relevant benchmarks. Finally, we provide a number of results
and discuss the advantages and limitations of the different forecast reconciliation methods de-
scribed previously.

VI.4.1 Case Study Based on a Danish Dataset

The dataset provided by the Danish Transmission System Operator, Energinet.dk, includes wind
power measurements for 349 wind farms in western Denmark, for the period between January
2006 and March 2012. The measurements have a 15-minute temporal resolution. An exten-
sive analysis of this dataset has been performed by (Girard and Allard, 2013; Lenzi et al., 2018;
Messner and Pinson, 2019). These studies identified the conditional space-time dependencies of
power generation at the various sites, including the nonstationarity of the underlying stochastic
processes.

Only a subset of the available dataset, both in terms of number of wind farms and time period,
was selected. Firstly, sites with non-negligible episodes with missing data were discarded. Out of
the 250 sites left, only 100 sites were randomly selected, for simplicity. They are shown in Fig. 49.

Out of the complete dataset, a period with 70 080 time steps (2 years) was extracted for this
analysis, from 2010 and 2011. The power measurement time-series for the 100 sites were then
further cleaned, considering both erroneous and suspicious data points. For each site, observa-
tions exceeding 1.5 times the quantile with nominal level 0.99 of the distri- bution of observations
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Figure 49 The 100 Danish sites selected from the complete Danish wind power dataset, then divided into 4
regions.

were removed. Power measurements were then normalized by the nominal capacity of that site.
However, as this nominal capacity may change with time, a function computing rolling maxima
was used for its estimation (package zoo2) and adaptive normalization. Rolling windows of 5 000
time steps were used. Consequently for the bottom nodes, all resulting observations take value
in the unit interval [0,1].

The aggregate time-series for the various regions and the whole portfolio were obtained by using
a summing matrix S (see Section VI.2.1). As in the example of Fig. 48, our hierarchy has 3 levels,
with bottom nodes, regions, and the overall sum (referred to as total). The 100 wind farms were
grouped in 4 regions, as shown in Figure 49. Each region is composed of 25 wind farms, by
dividing the Western Denmark area into 4 quadrants. Owing to this summation, power values for
the region level and the whole portfolio are within [0,25] and [0,100], respectively.

Forecasts are to be generated for each and every node of the hierarchy, i.e., for the 100 bottom
nodes, the 4 regions and the overall portfolio (total). These are referred to as base forecasts.
For simplicity, only 1-step ahead forecasts were considered, though the methodology could be
readily used to reconcile forecasts for further lead times. Following the analysis and results in
(Girard and Allard, 2013; Lenzi et al., 2018; Messner and Pinson, 2019), Auto-Regressive models
with 2 lags - AR(2), were found sufficient to model the temporal dynamics of the time-series as
input to forecasting. Thus, using the first 6 months of data as training dataset, AR(2) models
were fitted through LS minimization for each node in the hierarchy. It was verified that those
forecasts were competitive and their quality at the level of the state of the art for such short

2Available on CRAN at: https://cran.r-project.org/web/packages/zoo
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lead times. These could be improved by considering more advanced models and possibly on-
line learning, though only seen as different and possibly more accurate forecasts as input to
forecast reconciliation. The following 6 months were then used as training for the batch reconcil-
iation approaches. Specifically the online approach was initialized on the first time step of that
period and then recursively updated trough the remainder of the dataset. For simplicity, the
equivalent number of observations was set to nλ = 10, 000 though it could have been optimized
through cross-validation. This eventually leaves the last year (2011) of data for genuine forecast
verification.

VI.4.2 Forecast Verification Framework and Benchmarking

Our evaluation procedure is based on current practices for the verification of wind power fore-
casts, as recently described in (Messner et al., 2020). To be consistent with the least squares
objective used to fit the models, i.e. the quadratic loss function, we use the Normalized Root
Mean Square Error (NRMSE) as forecast verification criterion. For a set of T forecast-observation
pairs for the node i of the hierarchy, the Scaled Root Mean Square Error (SRMSE) is given by

SRMSEi =

(
1

T

T∑
t=1

(
εi,t+1|t

si

)2
) 1

2

(174)

with si =


100, if i = 1 (total)
25, if i = 2, . . . , 5 (region level)
1, if i = 6, . . . , 105 (bottom level),

.

where εi,t+1|t is the one-step ahead forecast error for the forecast issued at time t for the ith node
of the hierarchy. Score values are commonly multiplied by 100 as if expressed as percentages
(of capacity). We additionally introduce a score that combines results for all nodes of the hierar-
chy, accounting for the number of nodes at each level. This Weighted Root Mean Square Error
(WRMSE) is defined as

WRMSE =
1

NL L

N∑
i=1

NRMSEi, (175)

where NRMSEi naturally reflects the importance of each node since relying on different scales
(directly related to the number of bottom nodes it aggregates).

Since we aim to show how forecast reconciliation contributes to both restoring coherency and
improving forecast accuracy, we report improvements with respect to the base forecasts. These
improvements can be interpreted as percentage decrease in SRMSE compared to the base
forecasts. For a given node i and reconciliation method, this writes

ISRMSEi,method =
SRMSEi,base − SRMSEi,method

SRMSEi,base
, (176)

where SRMSEi,base and SRMSEi,method are the SRMSE values for the base forecasts and reconcili-
ation method considered, respectively. A similar criterion can defined using the WRMSE criterion.

In the following, we will consider forecast reconciliation based on our two estimators, i.e., MLSE
and MRLSE, as well as the state-of-the-art MinT approach. A complete description of the MinT
approach to forecast reconciliation is available in (Athanasopoulos et al., 2016), while appli-
cations to wind power forecasting are described in (Zhang and Dong, 2018; Bai and Pinson,
2019). In this work, we consider the covariance matrix of the one-step-ahead forecast errors is
estimated using the in-sample model residuals. More advanced shrinkage covariance estima-
tors can also be used in high-dimensional setting. Finally, to measure the statistical significance
of the differences in scores for the various reconciliation methods, we use the Diebold-Mariano
(DM) test (see (Messner et al., 2020)). The differences are always found significant.
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VI.4.3 Results and Discussion

A. Observing the need for forecast reconciliation

To first illustrate the need for forecast reconciliation based on our case study, we look at the
lack of coherence between forecasts at various levels of the hierarchy. Forecasts for the upper
levels of the hierarchy (regions and total) are obtained based on the summing matrix S and then
compared to the forecasts readily produced at these levels. These differences are therefore in
the range of [-25,25] at the region level and [-100,100] at the total level. Results are depicted in
Fig. 50 (in a fashion similar to the results in (Zhang and Dong, 2018)) and support the statement
made with (155). These inconsistency errors are up to 4% here, at both region and total levels.
Since the various approaches we consider hereafter allow for reconciliation by design, all those
inconsistencies are then removed.

Figure 50 Incoherency, as expressed by (155), observed in the upper levels of the hierarchy over a randomly
chosen period of 2 weeks.

B. Impact on forecast quality

The literature on forecast reconciliation has regularly covered the fact that reconciliation even-
tually yields improvements in forecast quality. For instance already in (van Erven and Cugliari,
2015), the authors made a point that their game-theoretical optimal projection approach could
reconcile forecasts by design while providing a geometry-inspired proof of forecast quality im-
provement (under a quadratic criterion). We consequently investigate here whether forecast
improvements are obtained based on the approaches we proposed, and how it compares with
the existing e.g. MinT.

We first look at the score values obtained over the one-year evaluation period covering 2011.
These score values are collated in Table 17, using the SRMSE criterion expressed in percentage
of nominal capacity (as an average for all nodes at a given level) and related improvements
with the ISRMSE criterion. Scores values are lower as we go to more aggregate levels thanks to
smoothing effects. All approaches yield forecast improvements, also at all levels of the hierar-
chy. The online forecast reconciliation approach based on MRLSE consistently gives the largest
forecast improvements, those being larger as one gets towards lower levels of the hierarchy.

More than those average values, the distribution of improvements among bottom nodes and
regions are of utmost importance. Results are qualitatively similar at these two levels of the
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Table 17 Impact of forecast reconciliation on the quality of the forecasts, based on the SRMSE criterion [in
% of nominal capacity] with related ISRMSE values [in %].

bottom (av.) regions (av.) total

SRMSE base 4.90 1.31 0.703

MinT 4.81 1.28 0.699

MLSE 4.65 1.26 0.690

MRLSE 4.53 1.22 0.676

ISRMSE base – – –

MinT 1.84 2.29 0.57

MLSE 5.1 3.82 1.84

MRLSE 7.55 6.87 3.84

hierarchy, hence we place emphasis on bottom nodes since relying on larger populations (100
nodes). Corresponding boxplots are depicted in Fig. 51. While forecast quality improvements
are highest on average for our online forecast reconciliation approach based on the MRLSE
estimator, there is also a high variability in those improvement. Those are always positive and up
to more than 15% for a given site.

Figure 51 Distribution of improvements (ISRMSE) for bottom nodes and for the 3 forecast reconciliation ap-
proaches.

C. Time-varying aspect of forecast reconciliation

As a motivation for the proposal of an online forecast reconciliation approach, we mentioned
the fact that the underlying stochastic processes are nonstationary. As a consequence, we
expect that the parameters Θ evolve with time throughout the dataset. This is illustrated by
Fig. 52 which show the temporal evolution of the coefficients associated to sites 25, 31, and 96 to
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obtain the reconciled forecast values for the total level. Their evolution combine smoother and
higher-frequency fluctuations. Remember that the forgetting factor used is very large (nλ = 10
000) hence yielding an MRLSE estimator with fairly long memory.

Figure 52 Evolution of randomly chosen coefficient (for sites 25,31 and 96) contributing to obtaining the
reconciled forecasts at total level.

Subsequently we look at the impact of nonstationarity on the quality of the forecasts obtained
after forecast reconciliation. Figure 53 gathers monthly IWRMSE values for the 12 months of the
verification period, and for the 3 reconciliation approaches considered. The MRLSE estimator,
which accom- modate nonstationarity, systematically performs better than the MLSE one, for
which parameters are static throughout that year. There is also a trend that the improvement
from MRLSE increases with time, which is consistent with the fact it is the only approach that aims
to accommodate nonstationarity.

D. Consistency among potential hierarchies

A fairly specific hierarchy was considered. Indeed, Western Denmark is specifically split into 4
quadrants, i.e., contiguous areas with the same number of wind power production sites. How-
ever, it is of interest to see how the forecast reconciliation approaches would perform if we
were to consider different types of hierarchies. For simplicity, we stick to a 3-level hierarchy and
the idea of having the same number (25) of wind power generation sites in each of the mid-
level nodes. Consequently we perform a Monte-Carlo simulation experiment, for which instead
of considering geographical information, sites are randomly assigned to the 4 regions. Strictly
speaking these are not regions anymore, but geographically dispersed port- folios instead. 100
replicates of this Monte-Carlo simulation experiment are used to obtain a distribution of scores
values (SRMSE, WRMSE, and related improvements) at the bottom, region and total levels. The
results for the ISRMSE criterion are depicted in the form of boxplots, for the various levels and
reconciliation approaches, in Fig. 54.

At the region and total levels level, there is variability in the forecast improvements obtained,
though the online forecast reconciliation through the MRSLE estimator consistently performs best.
The variability is highest at the region level, since the structure of the hierarchy highly influences
potential forecast improvement. Actually by comparing the results with Table 17, one observes
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Figure 53 IWRMSE calculated on a monthly basis through the one-year verification period.

Figure 54 Boxplots for the distribution of ISRMSE values over a Monte-Carlo experiment with 100 replicates.

that the quadrant based hierarchy is the worst (with much lower ISRMSE values) as it is the worst
hierarchy to pick, i.e., with the smallest possible smoothing effect. Such hierarchy randomization
study could be extended to the case of having different number of sites per region.
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VI.5 Concluding Remarks

A data-driven approach to forecast reconciliation was introduced, in a multivariate regression
framework. The main interest of that approach is that it eventually allows for online forecast rec-
onciliation, hence allowing to adapt to nonstationarity in the underlying stochastic processes. A
proof of reconciliation by design was also provided, making that, even trained on specific past
data, our approach allows to reconcile any new forecasts out of sample.

The case study application concentrated on a fairly simple setup, with 1-step ahead and short-
term forecasts only, as the main focus was the reconciliation process, which is independent from
the lead time, rather than the forecasting one. The approach may be readily used for multi-step
ahead forecasts and day-ahead forecasting, though we expect the results to be qualitatively
equivalent.

In addition, the forecast reconciliation problem is seen as centralized, but it could be readily
distributed using e.g. ADMM and the likes, since consisting of a convex optimization problem.
Similarly, sparsification was not considered here, while it may be clearly of interest to minimize
the number of alterations to forecasts in the reconciliation process. This may be considered in
the future, the same way MinT has been generalized by allowing for shrinkage. However, this
will bring some complexity in the derivation of the online estimator due to the L1-regularization
which is not continuously differentiable. Finally, other types of models may be thought of in a
multivariate regression framework. Although we are restricting our model to the linear setting,
as done in all reconciliation literature, one could generalize it to the non linear setting, e.g. by
using Support Vector Regression, Gradient Boosting or Random Forests. While clearly reconcili-
ation properties would need to be verified in those cases, the non-linear setting would make it
possible to account for conditional effects (e.g. from weather conditions and prevailing wind
direction) as well as regime-switching, either explicitly or by the use of an adaptive forgetting
factor scheme.

VII. Conclusions

This section summarizes the main contributions and findings from Task 4.1. The topics for future
work are also identified.

VII.1 Summary

Despite the many benefits of RES, there are challenges to overcome since their generation de-
pends on weather factors (wind speed, clouds, solar irradiance, etc.). Consequently, accurate
forecasts are essential to reduce electrical energy imbalances in the electricity market and de-
sign advanced decision-aid tools to support the integration of large amounts of RES into the
power system.

The following main contributions are provided by Task 4.1:

1. Extreme quantile forecasting. Forecast uncertainty is minimized by combining extreme
value theory estimators for truncated generalized Pareto distribution with non-parametric
methods, conditioned by spatio-temporal information. In this framework, covariates are
used to produce conditional forecasts of quantiles without any limitation in the number
of variables, and the parametric extreme value theory-based estimator can be combined
with any non-parametric model (artificial neural networks, gradient boosting trees, random
forests, etc.) without any major modification.
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The results for a synthetic dataset show that the proposed approach better captures the
overall tails’ behavior, with smaller deviations between real and estimated quantiles. The
proposed method also outperforms state-of-the-art methods in terms of quantile score
when evaluated using real data from wind and solar power plants.

2. Privacy-preserving collaborative models. Cooperation between multiple RES power plant
owners can lead to an improvement in forecast accuracy thanks to the spatio-temporal
dependencies in time series data. Such cooperation between agents makes data privacy
a necessity since they usually are competitors. The main contributions to this topic are:

(a) A numerical and mathematical analysis of the existing privacy-preserving regression
models and identification of weaknesses in the current literature. Existing methods of
data privacy are unsatisfactory when it comes to time series and can lead to confi-
dentiality breaches – which means the reconstruction of the entire private dataset by
another party.
These techniques are grouped as (a) data transformation, such as the generation of
random matrices that pre- or post-multiply the data or using principal component
analysis with differential privacy, (b) secure multi-party computation, such as linear
algebra protocols or homomorphic encryption (encrypting the original data in a way
that arithmetic operations in the public space do not compromise the encryption),
and (c) decomposition-based methods like the ADMM or the distributed Newton-
Raphson method. The main conclusions were that data transformation requires a
trade-off between privacy and accuracy, secure multi-party computations either re-
sult in computationally demanding techniques or do not fully preserve privacy in VAR
models, and that decomposition-based methods rely on iterative processes and after
a number of iterations, the agents have enough information to recover private data.

(b) Based on the previous state-of-the-art analysis, a privacy-preserving forecasting al-
gorithms is proposed. Data privacy is ensured by combining linear algebra transfor-
mations with a decomposition-based algorithm, allowing to compute the model’s
coefficients in a parallel fashion. This novel method also included an asynchronous
distributed algorithm, making it possible to update the forecast model based on infor-
mation from a subset of agents and improve the computational efficiency of the pro-
posed model. The mathematical formulation is flexible enough to be applied in two
different collaboration schemes (central hub model and peer-to-peer) and paved the
way for learning models distributed by features, instead of observations.
The results obtained for wind and solar energy datasets show that the privacy-preserving
model delivers a forecast skill comparable to a model without privacy protection and
outperformed a state-of-the-art method based on analog search.

3. Online learning and reconciliation. Due to the high variability of RES generation, forecast-
ing RES generation close to real-time is of utmost importance for the efficient operation of
power systems and electricity markets. Using distributed learning approaches described
above that help preserve the privacy of RES agents, two novel approaches are proposed
to recursively update model parameters while limiting information exchange between RES
agents and other potential data providers. Specifically, the OADMM and Adaptive D-
MIDAS, were proposed for high-dimensional AR-X model coefficient estimation, closing the
gap between online and distributed optimisation in RES forecasting.

The ability of both algorithms to track time-varying model coefficients is verified in a study on
simulated data. Then, a case study with a real-world dataset of 311 wind farms compares
the two algorithms and demonstrates a better forecast accuracy of the OADMM than the
Adaptive D-MIDAS. This is largely due to the OADMM’s better controllability between adap-
tivity and the estimated model coefficient variance. The case study additionally confirms
that online learning is superior to offline learning, as already supported by previous work,
although based on centralised learning algorithms.
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Additionally, a data-driven approach for online forecast reconciliation is formulated in a
multivariate regression framework, which ensures the coherency of forecasts among vari-
ous agents at various aggregation levels. The main interest of that approach is that it even-
tually allows for online forecast reconciliation, hence allowing to adapt to nonstationarity in
the underlying stochastic processes. It relies on a multivariate least squares estimator, with
equality constraints on the coefficients. A recursive and adaptive version of that estimator
is derived, hence allowing to track the optimal reconciliation in a fully data-driven manner.
A proof of reconciliation by design is also provided, making that, even trained on specific
past data, the proposed approach allows to reconcile any new forecasts out of sample.

All in all, all sections have an associated publication, in journals ranging in impact factors from
3.414 up to 7.917, as described in what follows.

VII.2 Dissemination

Each section has one companion publication published in a peer-reviewed journal with quartile
score Q1 (the impact factor is indicated as IF).

Extreme Conditional Quantiles Forecasting

Section II. C. Gonçalves, L. Cavalcante, M. Brito, R.J. Bessa and J. Gama, “Forecasting condi-
tional extreme quantiles for wind energy,” Electric Power Systems Research, vol. 190, pp. 106636,
Jan. 2021, doi:10.1016/j.epsr.2020.106636. [IF=3.414, Q1]

Privacy-preserving Forecasting Model

Section III. C. Gonçalves, R.J. Bessa, and P. Pinson, “A critical overview of privacy-preserving
approaches for collaborative forecasting,” International Journal of Forecasting, vol. 37, no. 1,
pp. 322-342, 2021, doi:10.1016/j.ijforecast.2020.06.003. [IF=3.779, Q1]

Section IV. C. Gonçalves, R.J. Bessa, and P. Pinson, “Privacy-preserving distributed learning for
renewable energy forecasting,” IEEE Transactions on Sustainable Energy, vol.12, no. 3, pp. 1777-
1787, 2021, doi: 10.1109/TSTE.2021.3065117. [IF=7.917, Q1]

Online distributed learning and reconciliation in RES forecasting

Section VI. C. di Modica, P. Pinson and S. Ben Taieb, “Online forecast reconciliation in wind
power prediction,” Electric Power Systems Research, vol. 190, pp. 106637, Jan. 2021, doi:
10.1016/j.epsr.2020.106637. [IF=3.779, Q1]

The work developed in Task 4.1 was also disseminated by conferences:

• The Section II proposal was presented at the international XXI “Power Systems Computation
Conference” (PSCC 2020).

C. Gonçalves, L. Cavalcante, M. Brito, R. J. Bessa, and J. Gama, “Forecasting conditional
extreme quantiles for wind energy”, PSCC 2020

• The Section VI proposal was presented at the international XXI “Power Systems Computa-
tion Conference” (PSCC 2020).

C. di Modica, P. Pinson and S. Ben Taieb, “Online forecast reconciliation in wind power
prediction”, PSCC 2020.
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VII.3 Future Work

The following topics were identified for future work:

1. Extreme quantile forecasting. Forecasting rare events remains a challenge given the scarcity
of data to represent them. Future research should consider:

(a) the inclusion of information from weather ensembles, as additional covariates, in order
to exploit its capability to capture extreme events with a physically-based approach;

(b) the generalization of the proposed method to other energy-related time series, e.g.,
electricity market prices (energy, system services, etc.);

(c) the development of new proper scoring rules are needed to evaluate the forecasting
skill of extreme (rare) events (see Lerch et al. (2017) for instance).

2. Privacy-preserving collaborative models. Privacy-preserving techniques are very sensitive
to data partitioning and the problem structure. Future research should consider:

(a) Uncertainty forecasting and application to non-linear models (and consequently longer
lead times), which we plan to investigate in a forthcoming work. Nevertheless, uncer-
tainty forecast can be readily generated by transforming original data using a logit-
normal distribution (Dowell and Pinson, 2015). The proposed privacy-preserving proto-
col can be applied to non-linear regression by extending the additive model structure
to a multivariate setting (de Souza et al., 2018) or by local linear smoothing (Jiang,
2014).

(b) The extension to other non-linear multivariate models recently considered in collabo-
rative learning Li et al. (2020), such as long short-term memory networks and variants
which can make use of NWP as input. These models would require changes in the pro-
tocol for data transformation. For example, the rectifier (ReLU), which is an activation
function commonly used in neural networks and defined as f(x) = max(0, x), has the
problem that f(MZQB) ̸= Mf(ZQB).

3. Online Forecasting and Reconciliation Models. The proposed online forecasting and rec-
onciliation models assume deterministic linear regression models and the agents’ willing-
ness to participate. Future research should consider:

(a) extensions of the online distributed learning algorithms for the case of probabilistic
forecasting.

(b) the relaxation of the assumption such that agents are willing to collaborate, truthfully
and rationally, it may be crucial to investigate federated learning and data markets.

(c) nonlinear models, accounting for conditional effects (e.g. from weather conditions
and prevailing wind direction) as well as regime-switching, either explicitly or by the
use of an adaptive forgetting factor scheme.
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Appendices

A. Differential Privacy

Mathematically, a randomized mechanism A satisfies (ε,δ)-differential privacy Dwork and Smith
(2010) if, for every possible output t of A and for every pair of datasets D and D′ (differing in at
most one record),

Pr(A(D) = t) ≤ δ + exp(ε)Pr(A(D′) = t). (177)

In practice, differential privacy can be achieved by adding random noise W to some desirable
function f of the data D. That is,

A(D) = f(D) +W. (178)

The (ε,0)-differential privacy is achieved by applying noise from Laplace distribution with scale
parameter ∆f1

ε , with ∆fk = max{∥f(D) − f(D′)∥k}. A common alternative is the Gaussian distri-
bution but, in this case, δ > 0 and the scale parameter which allows (ε,δ)-differential privacy is

σ ≥
√
2 log

(
1.25
δ

)
∆2f
ε . Dwork and Smith (2010) showed that the data can be masked by consid-

ering
A(D) = D+W. (179)

B. Optimal value of r

Proposition 5 Let XAi ∈ RT×s be the sensible data from agent i, with u unique values, and MAj ∈
RT×T be the private encryption matrix from agent j. If agents compute MAjXAi applying the
protocol in (95)–(96), then two invertible matrices DAi

∈ Rr×r and CAi
∈ RT×(r−s) are generated

by agent i and data privacy is ensured for
√
Ts− u < r < T. (180)

Proof Since agent i only receives MAj
[XAi

CAi
]DAi

∈ RT×r, the matrix MAj
∈ RT×T is protected if

r < T . Furthermore, agent j receives [XAi
CAi

]DAi
∈ RT×r and does not know XAi

∈ RT×s,CAi
∈

RT×r−s and DAi ∈ Rr×r. Although XAi ∈ RT×s, we assume this matrix has u unique values whose
positions are known by all agents – when defining a VAR model with p consecutive lags ZAi has
T+p−1 unique values, see Figure 18 – meaning there are fewer values to recover.

Given that, agent j receives Tr values and wants to determine u+ T (r − s) + r2. The solution of
the inequality Tr < u + T (r − s) + r2, in r, determines that data from agent i is protected when
r >

√
Ts− u.

□

Proposition 6 Let XAi
∈RT×s and GAi

∈RT×g be private data matrices, such that XAi
has u unique

values to recover and GAi
has v unique values that are not in XAi

. Assume the protocol in (95)–
(96) is applied to compute MXAi , X

⊤
Ai
M−1 and MGAi , with M as defined in (93). Then, to ensure

privacy while computing MXAi
and X⊤

Ai
M−1, the protocol requires

√
Ts− u < r < T/2 ∧ r > s. (181)

In addition, to compute MGAi
, the protocol should take√

Tg − v < r′ < T − 2r ∧ r′ > g. (182)
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Proof (i) To compute MXAi
, the i-th agent shares WAi

= [XAi
,CAi

]DAi
∈ RT×r with the n-th

agent, CAi ∈ RT×(r−s), DAi ∈ Rr×r, r > s. Then, the process repeat until the 1-st agent re-
ceives MA2 . . .MAnWAi and computes MWAi = MA1MA2 . . .MAnWAi . Consequently, agent
j = 1, . . . , n receives Tr values during the protocol.

(ii) X⊤
Ai
M−1 is computed using the matrix WAi defined before. Since M−1 = M−1

An
. . .M−1

A1
,

the n-th agent computes W⊤
Ai
M−1

An
. Then, the process repeat until the 1-st agent receives

W⊤
Ai
M−1

An
. . .M−1

A2
and computes W⊤

Ai
M−1 = W⊤

Ai
M−1

An
. . .M−1

A2
M−1

A1
. Again, the j-th agent re-

ceives Tr values related to the unknown data from the i-th agent.

In summary, the n-th agent receives Tr values and unknowns u + T (r − s) + r2 (from XAi , C, D).
The solution for Tr<u+ T (r − s) + r2 allows to infer that XAi

is protected if

r >
√
Ts− u.

On the other hand, the i-th agent receives 2Tr values (MWAi
, W⊤

Ai
M−1) and unknowns T 2 from

M ⇒ r<T/2.

(iii) Finally, to compute MGAi
, the i-th agent should define new matrices C′

Ai
∈ RT×(r′−g) and

D′
Ai

∈ Rr′×r′ sharing W′
Ai

= [GAi
,C′

Ai
]D′

Ai
∈ RT×r′ , r′ > g. The computation of MW′ provides

Tr′ new values, meaning that after computing MXAi , X
⊤
Ai
M−1 and MGAi , the n-th agent has

Tr+Tr′ values and does not know u+T (r−s)+r2+v+T (r′−g)+r′2 (from XAi
, CAi

, DAi
, GAi

, C′
Ai

and D′
Ai

respectively). The solution of the inequality Tr+Tr′ < u+T (r− s)+ r2+ v+T (r′− g)+ r′2

allows to infer that r′ >
√

Ts− u− r2 − v + Tg >
√
Tg − v.

On the other hand, the i-th agent receives 2Tr + Tr′ and does not know T 2, meaning that
r′ < T − 2r. □

C. Privacy Analysis

The proposed approach requires agents to encrypt their data and then exchange that en-
crypted data. This appendix section analyzes the global exchange of information. First, we
show that the proposed privacy protocol is secure in a scenario without collusion, i.e., no al-
liances between agents (data owners) to determine the private data. Then, we analyze how
many agents have to collude for a privacy breach to occur.

C.1 No collusion between agents

While encrypting sensible data XAi
∈RT×s and GAi

∈RT×g such that XAi
has u unique values to re-

cover and GAi has v unique values that are not in XAi , the 1-st agent obtains M[XAi ,CAi ]DAi∈RT×r,
[[XAi

,CAi
]DAi

]
⊤
M−1∈RT×r and M[GAi

,C′
Ai
]D′

Ai
∈RT×r′ , ∀i, which provides 2nTr + nTr′ values.

At this stage, the agent does not know

T 2︸︷︷︸
M

+(n− 1)u︸ ︷︷ ︸
XAi

,∀i ̸=1

+(n− 1)v︸ ︷︷ ︸
GAi

,∀i ̸=1

+(n− 1)T (r − s)︸ ︷︷ ︸
CAi

,∀i ̸=1

+(n− 1)r2︸ ︷︷ ︸
DAi

,∀i ̸=1

+(n− 1)T (r′ − g)︸ ︷︷ ︸
C′

Ai
,∀i̸=1

+(n− 1)r′
2︸ ︷︷ ︸

D′
Ai

,∀i ̸=1

values. Then, while fitting the LASSO-VAR model, the 1-st agent can recover MX ∈ RT×ns and
MG ∈ RT×ng, as shown in Section III. That said, the 1-st agent receives 2nTr+nTr′+nTs+nTg, and
a confidentiality breach occurs if T (2nr+nr′+ns+ng) ≥ T 2+(n−1)[u+v+T (r−s)+r2+T (r′−g)+r′

2
].

After a little algebra, it is possible to verify that taking (181) and (182), the previous inequality has
no solution in R+

0 .
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C.2 Collusion between agents

A set of agents C can come together to recover the data of the remaining competitors. This
collusion assumes that such agents are willing to share their private data. Let c be the number
of agents colluding. In this scenario, the objective is to determine M ∈ RT×T , knowing MWAi ∈
RT×r, W⊤

Ai
M−1 ∈ Rr×T , MW′

Ai
∈ RT×r′ , MXAi

∈ RT×s, and MGAi
∈ RT×g, i ∈ C.

Mathematically, it means that colluders can recover T 2 values by solving cT (r + r + r′ + s + g)
equations, which is only possible for c ≥ ⌈ T

2r+r′+s+g ⌉.

D. Online Reconciliation: additional corollary

The proposal in Section VI is based on the equality constraint in (160b), leading to Theorem 1
that ensures reconciliation by design (for the MLSE estimator, as well as its online version MRLSE).
Actually, one can get an even more general version of that result, which does not require the
equality constraint, as long as the measurements are themselves additively coherent. This leads
to the following corollary to Theorem 1 (which is also valid for the online version MRLS of the MLS
estimator). A proof is also given.

Corollary 1 (reconciliation by design of the MLS estimator) By computing Θ̂MLS
k using (165) and

given that Yk are additively coherent, for any new forecast (out-of-sample) ŷt+k|t, the recon-

ciled forecasts given by
(
Θ̂MLS

k

)⊤
ỹt+k|t are additively coherent.

Proof Given the training dataset of measurements and base forecasts, respectively

Yk =


y⊤
1+k

...

y⊤
T+k

 and Ŷk =


ỹ⊤
1+k|1

...

ỹ⊤
T+k|T

 , (183)

the MLS estimator is obtained by

Θ̂MLS
k =

(
Ŷ⊤

k Ŷk

)−1

Ŷ⊤
k Yk = ΩkYk , (184)

where
Ωk =

(
Ŷ⊤

k Ŷk

)−1

Ŷ⊤
k ∈ R(N+1)×T . (185)

Breaking down matrices Ωk and Yk element-wise, and dropping index k from the element in-
dexing to avoid clutter.

Θ̂MLS
k =


Ω1,1 . . . Ω1,T

...
...

ΩN,1 . . . ΩT,N



y1,1 . . . y1,N

...
...

yT,1 . . . yT,N

 = (186)


∑T

j=1 Ω1,jyj,1 . . .
∑T

j=1 Ω1,jyj,N
...

...∑T
j=1 ΩN+1,jyj,1 . . .

∑T
j=1 ΩN+1,jyj,N

 . (187)
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For any new forecast (out-of-sample) ŷt+k|t, the product
(
Θ̂MLS

k

)⊤
ỹt+k|t yields


∑T

j=1 Ω1,jyj,1 . . .
∑T

j=1 ΩN+1,jyj,1
...

...∑T
j=1 Ω1,jyj,N . . .

∑T
j=1 ΩN+1,jyj,N





1

ŷt,1
...

ŷt,N


= (188)

=



∑T
j=1 Ω1,jyj,1 + · · ·+ ŷt,N

∑T
j=1 ΩN+1,jyj,1∑T

j=1 Ω1,jyj,2 + · · ·+ ŷt,N
∑T

j=1 ΩN+1,jyj,2
...∑T

j=1 Ω1,jyj,N + · · ·+ ŷt,N
∑T

j=1 ΩN+1,jyj,N


. (189)

The first element is equal to the sum of the others (i.e. the forecasts are reconciled) if and only if

∑T
j=1 Ω1,jyj,1 =

∑T
j=1 Ω1,jyj,2 + . . .

· · ·+
∑T

j=1 Ω1,jyj,N
...∑T

j=1 ΩN+1,jyj,1 =
∑T

j=1 ΩN+1,jyj,2 + . . .

· · ·+
∑T

j=1 ΩN+1,jyj,N ,

(190)

or equivalently,
yj,1 = yj,2 + · · ·+ yj,N , ∀j = 1, . . . , T, (191)

i.e. when the measurements are consistent. □

It is worth noting that although this is the case in theory and in some practical applications, there
might be cases where this consistency is not achieved in practice. Measuring errors, missing
data and subsequent imputation techniques could for example affect data coherency and
justify reconciliation through Θ̂MLSE

k .
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