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Executive summary

This Deliverable Report presents the work developed by ARMINES in the frame of Task 3.2 (“To-
wards a generic seamless forecasting approach for multiple time scales”) of the Smart4RES
project. The main aim of this Task is to simplify the forecast model chain in light of increasing
spatial footprint of virtual power plants (VPPs) and power system specifics such as missing data.
The following presents a summary of the developed work and their main outcomes.

Automatic Feature Selection and Forecast Combination. The increasing spatial footprint of VPPs,
i.e., a multitude of renewable energy sources (RESs) aggregated over space, requires a large
set of input features. This induces collinearity between features and the curse of dimensionality.
Filters are model agnostic feature selection methods that reduce the feature set to enhance
accuracy and computational performance. In this work, we applied 6 filters that take into ac-
count nonlinear relationships and feature redundancy. Results on real-world data from mid-
west France showed that the filters combined with an Analog Ensemble (AnEn) outperformed
a Vanilla AnEn model that considered all features by 5.9%–15.6% on average, while improving
the computational performance by approximately 90%. We employed forecast combination to
improve forecast reliability. Linear and nonlinear probabilistic forecast combination effectively
improve the reliability and sharpness, outperforming Vanilla AnEn by 16.0%–31.2% on average.

Seamless trajectory forecasts. The increasing penetration of RESs, especially in electricity grids
with few synchronous generators, requires accurate and autocorrelated forecasts at high tem-
poral resolution to optimize storage control and maintain the power balance. The standard
method to generate trajectory forecasts is to forecast each horizon and model the dependen-
cies between the horizons via a covariance matrix. However, at high temporal resolution and
large forecast horizons, such an approach quickly becomes cumbersome (5 min resolution at
48 h ahead requires 576 marginals). In this work, we proposed to simplify the model chain signifi-
cantly by using a pattern matching model (PMM) that compares the current numerical weather
prediction (NWP) forecast to a history of analog NWP forecasts. The results on real-world data of
Rhodes, Greece, showed that there is no statistical difference in the performance of PMM and
the state-of-the-art while increasing the computational performance by approximately 98%.

Hierarchical forecasts with missing values. Power systems feature an inherent hierarchical struc-
ture. Ensuring forecast coherency across a hierarchy presents an emerging challenge in energy
forecasting. Proposed reconciliation approaches assume coherent historical observations by
construction; this is, however, often violated in practice due to equipment failures. We proposed
an end-to-end learning approach that directly handles missing values. We described a con-
ditional stochastic optimization approach based on prescriptive trees for end-to-end learning
with missing values that fully utilizes the available data. We validated the proposed approach
on real-world data from mid-west France comprising 60 wind turbines and 20 photovoltaic parks.
The empirical results showed that end-to-end learning outperforms two-step reconciliation ap-
proaches by 2.0%–2.5% on average while mitigating the adverse effect of missing data.

Key messages from the results presented in this Deliverable:

• Feature selection based on mutual information and forecast combination improve forecast
accuracy by 5.9%–15.6% and 16.0%–31.2%, respectively.

• We found no statistical difference in performance between PMM and the state-of-the-art
while PMM increases the computational performance by approximately 98%.

• End-to-end learning outperforms reconciliation approaches by 2.0%–2.5% on average while
mitigating the adverse effect of missing data.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337
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I. Introduction

I.1 Purpose and objectives of this Deliverable

This deliverable proposes forecasting products that enhance the forecast accuracy and simplify
the forecast model chain. Indeed, there generally exists a trade-off between forecast accuracy
and model complexity where too low accuracy or too high complexity will not result in uptake
by the industry. The objectives of the deliverable are the following:

1. Propose automatic feature selection techniques based on information theory to include
high-dimensional data while discarding irrelevant or redundant features (e.g., adjacent
satellite pixels).

2. Compare linear and nonlinear probabilistic forecast combination methods to enhance
forecast calibration, i.e., the statistical similarity between forecasts and observations.

3. Propose to significantly simplify the forecast model chain for high temporal resolution (≤ 5
min) trajectory forecasts from 5 minutes ahead up to 48 hours ahead. The high temporal
resolution aspect is relevant to new use cases such as inertia or frequency containment
reserve forecasting.

4. Apply the aforementioned methods to real-world data made available by the project part-
ners.

The document starts by defining the context of this work. Then the state of the art of similar
forecasting methods is reviewed, and contributions from the proposed approaches are explicitly
stated. After presentation of the case studies and the evaluation metrics, finally the results are
presented and discussed.

I.2 Context

I.2.1 Electricity markets

A forecast does not have intrinsic value; instead, a forecast can offer value when it is used in a
decision-making process. One particular decision-making process relevant to RES plant owners
is that of offering energy in electricity markets. This section provides an overview of the orga-
nization of short-term electricity markets. However, new use cases such as inertia or frequency
containment reserve forecasting emerge. These typically place additional requirements, often
more stringent, on the forecasts.

Short-term electricity markets are most often organized in a day-ahead market and an intraday
market. Most energy is traded on the day-ahead market, whereas the intraday market allows
producers and sellers to adjust their offers considering new information such as the latest weather
forecasts. Given that the underlying data generating process of RESs such as wind or solar is
stochastic, the intraday market plays an important role for RES plant owners to improve their bids
and subsequently maximize their revenue.

In either market, a producer (consumer) sells (buys) bids to (from) the market operator. A bid is
defined by a volume of energy for a specific Market Time Unit (MTU) to which the producer or
seller assigns a price (C/MWh). In the case of wind or solar energy, the assigned price is often
set to 0 since the marginal cost to produce a unit of energy is 0. Bidding continues until the Gate

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337
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Closure Time (GCT), after which the market operator computes the demand and offer curves
and determines the market clearing prices. Since the marginal cost of solar power and wind
power are 0, the financial gain for a wind or solar power producer is the market clearing price.

Since a forecast is hardly ever correct, the bid placed by the RES plant owner most likely deviates
from the actual production. The day-ahead bid can be adjusted by a bid on the intraday mar-
ket. However, deviating bids on the intraday market have to be compensated on the balancing
market by flexible energy producers that often feature high marginal cost. Compensating these
imbalances effectively constitutes a penalty for the RES plant owner. Consequently, it can be
said that a more accurate forecast results in lower penalties and therefore higher revenues for
the RES plant owner.

Unforeseen outages or erroneous forecasts can create disturbances that can cause the fre-
quency to deviate from its nominal operating point in the transmission grid or the voltage to
deviate from its nominal operating point in distribution grids. In order to avoid a black-out, ac-
tive power reserves need to be activated so that the system may return to its nominal operating
point. Such a reserve is known as an ancillary service and needs to be available with high re-
liability and minimal delay, e.g., within 30 seconds for frequency containment reserve or within
15 minutes for automatic frequency restoration reserve. With increasing RES penetration levels,
there is a pressing need to generate reliable and informative forecasts at much higher temporal
resolution and update frequency in order to offer such ancillary services. Complementing an
RES plant with, e.g., batteries, can improve the reliability further at additional costs.

I.2.2 Characteristics of renewable energy generation

Renewable energy generation is considered to be a stochastic process. For instance, the con-
version of light to electrical energy depends on many aspects that are challenging to model
accurately such as dust formation on solar panels, inverter characteristics, nonlinear tempera-
ture dependencies or shading events. Furthermore, PV power and wind power generation are
both processes that are correlated in space and time, which is nicely captured by Tobler’s first
law of geography: “everything is related to everything else, but near things are more related
than distance things”. Figures 1a and 1b show that nearby PV plants and wind turbines, respec-
tively, follow a highly similar pattern.

A forecast model is only as good as the data it is fed. It has been shown that spatially aggregat-
ing RES plants of various kinds, often referred to as a Virtual Power Plant (VPP), smooths the power
generation profile (see the VPP subplots in Figs. 1a and 1b). Combining multiple RES plants as a
VPP is of practical importance because a single RES plant might not have sufficient capacity to
participate in electricity markets. An additional advantage is the aforementioned smoothing;
since high variability is particularly challenging to forecast, VPP power output forecasts are often
more accurate. The input to the forecast model of a VPP will span a wider area and will be more
heterogeneous compared to the input to a single plant forecast model, e.g., a combination of
numerous satellite pixels and numerical weather prediction (NWP) grid points. This increases the
computational burden. Given emerging use cases that require substantially higher temporal
resolution (≤ 5 min), new forecast products need to be fast as well as reliable.

Generally speaking, a forecast horizon h larger than 6 h requires NWP forecasts as input features
because the correlation between the current observation yt and future observation Yt+h

1 is low.
However, the governing system of equations in NWP models put forth by meteorologists and
atmospheric scientists comprise nonlinear differential equations that are sensitive to the initial
conditions. For instance, even if it would be possible to fully model the atmosphere, oceans and
land masses, it would still be impossible to observe all of it down to a molecular level. Given dif-
ferent initial conditions, integrating the differential equations forward in time would yield quickly

1Note that the future observation is still a random variable, hence the capitalized letter.
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Figure 1 In (a), time series of the normalized power output of 19 individual PV plants and the VPP and in
(b), time series of the normalized power output of 19 individual wind turbines and the VPP (see Fig. 4 for a
measure of the distances between the sites).

diverging outcomes, which is commonly referred to as dynamical chaos. Given the stochastic
nature of the renewable energy conversion process and the uncertainty related to the weather,
probabilistic forecasts, as well as space-time scenarios, are typically preferred because it allows
forecast providers to communicate the uncertainty in their estimates. The next section will go
into more detail on stochastic processes and the various types of forecasts.

I.3 Forecasting renewable power generation

Renewable power generation is a stochastic process, as mentioned in Section I.2.2. Subse-
quently, a basic understanding of random variables and probability distributions is necessary
and a brief introduction will be given in Section I.3.1. A description of general aspects of fore-
casting will be given in Section I.3.2 with a particular focus on what a good forecast is. Then,
Sections I.3.3 and I.3.4 introduce point and probabilistic forecasts, respectively, along with met-
rics to determine their quality. We note that the following overview is mostly based on the book
Morales et al. (2014). This section concludes with an introduction into hierarchical forecasting,
which is a specific type of multivariate forecasting.
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I.3.1 A brief introduction to stochastic processes

To understand stochastic processes, it is helpful to first introduce random variables. The materi-
alization of a random variable, often denoted by X, varies due to randomness. For instance, a
discrete random variable is whether it will rain tomorrow or not. As such, this random variable
takes on values in the set X ∈ {0, 1}, each with a probability defined by the probability mass
function. In this report, we focus on continuous random variables, of which the probability dis-
tribution is defined by the probability density function (PDF) and the corresponding cumulative
distribution function (CDF). While the discrete random variable that says whether or not it will rain
tomorrow has a probability assigned to each outcome (e.g., P{X = 1} = 0.80), the probability
of a continuous random variable for any real value is 0, i.e., P{X = x} = 0 ∀ x. Consequently,
continuous random variables are defined by their cumulative probability P{X ≤ x}, which is the
cumulative distribution function:

F (x) = P{X ≤ x}, ∀x, (1)

which is a nondecreasing function with a value between 0 and 1, respectively. The PDF is the
derivative of the CDF and is therefore defined as:

f(x) =
dF

dx
, ∀x, (2)

which is always positive and integrates to 1. We conclude this brief introduction to random
variables by defining the quantile, since it is often used to describe nonparametric probabilistic
forecasts. If F (x) is strictly increasing, a quantile q with nominal probability level τ ∈ [0, 1] is the
unique value x of random variable X:

P{X ≤ x} = τ ⇔ q(τ) = F−1(τ). (3)

A stochastic process is indicated using capitalized letters and it is common in forecasting to use
Y to denote the stochastic process. Specifically, {Yr,s,t} is a multivariate stochastic process in the
sense that it occurs over time t = 1, · · · , T , locations s = s1, · · · , sn and renewable energy sources
r = r1, · · · , rm. Correspondingly, the observations of the multivariate stochastic process are de-
noted using lowercase letters: {yr,s,t}. In this report, the focus is on stochastic processes of the
type {Yt} since the types of RESs and all locations are aggregated to a single VPP. The stochastic
process {Yt} is particularly relevant for RES plant owners when participating in electricity mar-
kets or problems involving optimal control. Furthermore, Yt is equal to the power generation
divided by the installed capacity. The consequence is that error metrics can be presented as
percentages of installed capacity.

I.3.2 General aspects of forecasting

Section I.2.1 gave a brief introduction to electricity markets where bids needs to be placed
before GCT. Consequently, the production of the RES plant is still a random variable and needs
to be estimated before the plant owner can submit a bid. In case of thermal generators such as
gas or coal fired generators, such forecasts are trivial since their power output can be controlled
(barring failures). However, the production of an RES plant can vary substantially from day to
day and from month to month, i.e., so-called seasonality. Exceptions for RES plants do exist,
e.g., hydro power can make use of the fact that water can be stored in massive quantities, thus
enhancing the flexibility of such a system. However, in this report the focus is mainly on solar
and wind power, and the aggregation thereof. Notwithstanding, it is important to note that the
methods presented here could be extended to include other RESs.

An important aspect of the forecasting process is forecast verification, i.e., the question whether
a series of forecasts for a time period is any good. Murphy (1993) described three types of
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goodness that, when combined, define a good forecast: (i) consistency, which is to say that
the forecasts correspond to the forecaster’s best judgment; (ii) quality, i.e., the correspondence
between the forecasts and the observations; and (iii) value, specifically the incremental value
the forecasts bring to decision-makers.
Consistency has slightly different definitions for point and probabilistic forecasts. For the former,
when the forecasts are the conditional mean of the predicted probability distribution, consis-
tency is ensured by evaluating the forecasts using the root mean squared error (RMSE). For prob-
abilistic forecasts, consistency is guaranteed by using strictly proper scoring rules that maximally
reward forecasters in expectation only when their forecasts correspond to their judgments.
Quality is likely the most familiar aspect of forecast verification. However, there are several ways
to evaluate the quality of forecasts. Most often, forecast quality is assessed using measures such
as RMSE or the continuous ranked probability score (CRPS) in case of probabilistic forecasts. The
CRPS is a strictly proper scoring rule that elicits consistency because it maximally rewards the
forecaster if he or she quotes his or her best judgment as the forecast (Murphy, 1993). Besides
numerical measures, it is also possible to evaluate time-independent forecast quality through a
scatter plot or the probability integral transform histogram.
Value, as mentioned, is the benefit or cost that a decision-maker incurs by acting upon the in-
formation in a forecast. While forecasts are not evaluated by their value in this report, there is a
growing body of research that develops so-called value-oriented forecasts, see, e.g., Stratigakos
et al. (2022).

I.3.3 Point forecasts

A forecast is issued for a particular lead time, herein denoted with k. As such, the forecaster
gives an estimate of the random variable Yt+k|t, which is to say that the forecaster estimates
the random variable at time t + k given all information available at time t. A common way to
summarize the uncertainty associated with Yt+k|t is the expectation:

ŷt+k|t = E
[
Yt+k|θ̂, g,Ωt

]
, (4)

where ·̂ denotes an estimate, θ̂ represents the trained parameters of model g and Ωt the avail-
able information at time t.

The error of forecast ŷt+k|t can then be defined as:

ϵt+k|t = ŷt+k|t − yt+k, (5)

where ϵt+k|t ∈ [−1, 1] if Yt is normalized using the installed capacity2. Note that eq. (5) is defined
such that if ŷt+k|t > yt+k, it is an overprediction, whereas conversely it is an underprediction.

Using error ϵt+k|t, it is possible to measure the accuracy—as a part of the quality—of the forecasts
using a suite of measures. The most relevant are given here, starting with the mean bias error
(MBE):

MBE(t+ k) =
1

T

T∑
t=1

ϵt+k|t, (6)

where T is the length of the testing set. In case of point forecasts, the parameters θ̂ have been
learned from training data by minimizing the sum or mean of squared errors. In that scenario,

2Note that this can be exceeded for individual solar power systems due to cloud enhancement, i.e., the occasion
where the edge of a cloud acts as a lens that momentarily increases the light intensity and consequently increases the
power production above its rated power. However, this is unlikely to occur due to spatial and temporal smoothing.
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the RMSE is a consistent measure and it is defined as:

RMSE(t+ k) =

√√√√ 1

T

T∑
t=1

(ϵt+k|t)2, (7)

which is a score that assigns a larger penalty on large forecast errors. Alternatively, the mean
absolute error (MAE) is a consistent score if the forecaster issues the median of Yt+k as his or her
estimate. It is defined as:

MAE(t+ k) =
1

T

T∑
t=1

|ϵt+k|t|. (8)

Point forecasts are not the main interest of this report and the reader is therefore referred to
Morales et al. (2014) for a thorough discussion on this type of forecasts.

I.3.4 Probabilistic forecasts and scenarios

A notable issue with point forecasts is the lack of information concerning the uncertainty. For
instance, a point forecast may be informative if tomorrow is expected to be a clear day. How-
ever, if broken clouds dominate tomorrow, then it would be helpful for the decision-maker to
know what the probability is of generating a certain amount of energy during a time interval.
In such a case, probabilistic forecasts—and scenarios as a multivariate extension thereof—are
useful because they are designed to inform end-users of the uncertainty that the forecaster has
about Yt+k. In other words, instead of the point estimate ŷt+k|t the decision maker is now given
F̂t+k|t:

F̂t+k|t(y) = P
{
Yt+k ≤ y|θ̂, g,Ωt

}
, ∀y. (9)

In this report, the forecast F̂t+k|t consists of a sequence of quantile forecasts q̂t+k|t where τ ∈
{0.05, 0.10, · · · , 0.95}. As mentioned above, consistency can be ensured by using strictly proper
scoring rules such as the CRPS:

CRPS(t+ k) =
1

T

T∑
t=1

∫
x

(F̂t+k|t(x)−H(x− yt+k))
2dx. (10)

where H(x) is the Heaviside step function, whose value is 1 when x ≥ y and 0 otherwise. At this
point, it is important to note that the quality of probabilistic forecasts comprises three aspects:
(i) reliability or calibration; (ii) resolution; and (iii) sharpness.
A series of forecasts is calibrated when it is statistically similar to the observations. Calibration can
be evaluated using the probability integral transform over a testing set and allows the forecaster
to uncover various kinds of miscalibration. When a series of forecasts is calibrated, the following
holds:

F̂t+k|t(Yt+k) ∼ U [0, 1] , (11)

which is to say that calibrated forecasts result in a flat histogram bounded by 0 and 1. Miscalibra-
tion such as biases and erroneous dispersion—too wide or too narrow predictive distributions—
can easily be gauged from such histograms.
The resolution of a forecast model is related to its capability to generate forecasts that deviate
from the average observation. A climatological forecast has zero resolution since it is simply the
distribution of all observations.
Sharpness is a measure of the informativeness of the predictive distributions. In the case of
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the climatological forecast, the sharpness is poor because the predictive distributions contains
all observations—whereas it is perfectly calibrated. The paradigm in probabilistic forecasting is
that one should maximize the sharpness of the predictive distributions subject to calibration. In
this report, the root mean variance of probabilistic forecasts is used to measure the sharpness
(Gneiting and Ranjan, 2013).

Probabilistic forecasts inform end-users of uncertainty but they do not provide an estimate of the
dependencies across time, space or RES. Such information can be highly relevant, for instance
when scheduling thermal generators that are constrained by ramping times or when performing
a regional study into nodal voltage fluctuations. Then, the aim is to generate a multivariate
probabilistic forecast F̂ for the entire stochastic process {Yr,s,t} or a subset thereof, e.g., along
the temporal dimension as in this report.

Since conveying such a multivariate probabilistic predictive distribution is challenging, it is com-
mon to approximate this distribution using samples, which we refer to as trajectories or scenarios.
Each of these trajectories is an equiprobable sample of the multivariate predictive distribution
that, besides the quality aspects mentioned above, should reflect the dependence structure
present in the observations.

The most prominent proper scores to evaluate trajectory forecasts are the energy score (ES) and
variogram score (VS). Since there is no single forecast horizon k as previously, the multivariate
forecasts are only indexed using their issue-time, i.e., t|t. ES is a generalization of CRPS and is
defined as (Gneiting and Raftery, 2007):

ES
(
Ft|t,yt

)
= EF ∥Xt|t − yt∥ −

1

2
EF ∥Xt|t −X ′

t|t∥, (12)

where Xt|t and X ′
t|t are independent random vectors sampled from Ft|t and || · || represents

the Euclidean norm. An important result from the literature is that ES is is unable to discriminate
between poorly or correctly specified dependence structures (Pinson and Girard, 2012). There-
fore, VS is included to compare the quality of the dependence structure specification, which is
defined as (Scheuerer and Hamill, 2015):

VSp
(
Ft|t,yt

)
=

K∑
i,j=1

wij (|yi − yj |p − EF |xi − xj |p)2 , (13)

where xi and xj are components i and j of random vector Xt|t, which is distributed according

to Ft|t. Ft|t is approximated by S K-dimensional trajectories
(
x(1) x(2) · · · x(S)

)⊤
and EF |xi −

xj |p can be approximated by Scheuerer and Hamill (2015):

EF |xi − xj |p ≈ 1

S

S∑
s=1

|x(s)
i − x

(s)
j |p, i, j = 1, . . . ,K, (14)

where x
(s)
i and x

(s)
i are elements i and j of the sth trajectory forecast. Weights wij can be used

to add or reduce importance between certain forecast horizons. However, all weights are set to
1 and p = 0.5 in this report, as recommended by Scheuerer and Hamill (2015).

I.3.5 Hierarchical forecasts and missing data

The power system follows a natural hierarchy where traditionally high capacity thermal power
generators serve customers by a complex system of transmission and distribution networks, i.e.,
a top-down approach. The energy transition implies a diversion from this because distributed
power generators such a wind turbines and PV systems can be placed at different levels of the
hierarchy. Nevertheless, the hierarchy remains in place because of the various voltage levels
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Figure 2 Example of a 3-level hierarchy (top) and the corresponding aggregation matrix (bottom) with
n = 8, na = 3, and nb = 5.

in the grid. An important attribute of such a hierarchy is that the power generated at child
nodes must sum to the power recorded at the parent node (barring efficiency losses, which are
assumed to be zero in this report). Figure 2 presents an example of a hierarchy with 3 levels and
5 bottom nodes. At each of these nodes power can be generated but missing values occur
only at the bottom level while the top levels still record the aggregated power correctly. The
methodology will be detailed in Section II.3.3. Mathematically, the hierarchy in Fig. 2 can be
represented as follows:

yt = Syb
t ⇐⇒

ya
t

yb
t

 =

Sa

Inb

yb
t , ∀t ∈ [T ] (15)

where Sa ∈ {0, 1}na×nb aggregates the bottom-level series yb
t , Inb

is an nb-size identity matrix, and
[T ] := {1, . . . , T}. Following Rangapuram et al. (2021), a convenient way to represent (15) is given
by

Ayt = 0, ∀t ∈ [T ], (16)

where A = [Ina
,−Sa]

⊺ and Ina
is an na-size identity matrix.

In this context, so-called hierarchical forecasts need to behave similarly in the sense that the
power forecast at the child nodes should sum to the power forecast at the parent node, which
is referred to as a coherent forecast. Besides RMSE, the Scaled RMSE (SRMSE) has been proposed
to evaluated hierarchical forecasts (Di Modica et al., 2021). SRMSE is computed by dividing by
the total number of child notes. For a set of T forecasts, the SRMSE for the i-th series is defined
as:

SRMSEi =

 1

T

∑
t∈[T ]

(
yit − ŷit

si

)2
 1

2

, (17)

where si the number of child nodes.

In the frame of decision-making, which is the main way to extract value from forecasts, inco-
herent forecasts can lead to inconsistent decisions across the hierarchy and result in sub-optimal
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operation of the power system. However, these forecasts are often generated by different stake-
holders that do not share data with each other and it is therefore uncommon that the forecasts
are indeed coherent. To further complicate matters, it is common to encounter missing or er-
roneous data in power systems, especially at lower levels of the hierarchy, e.g., smart meters in
the homes of consumers; this violates the assumption that the measured power throughout the
hierarchy is coherent. Any forecast based on such a data set inevitably leads to incoherent fore-
casts and data completeness is often implicitly assumed in the literature. This part of the report
proposes a forecast model that automatically generates hierarchical forecasts while consider-
ing missing values at the most disaggregated level. Note that hierarchical forecasts are in fact a
special type of multivariate forecasts.

I.4 State of the art

The last part of this chapter introduces an overview of the state-of-the-art related to the present
work. It is divided into subsections that are related to the papers that this report is based on,
namely: (i) automatic feature selection; (ii) optimal forecast combination; (iii) seamless scenario
forecasts; and (iv) hierarchical forecasts with missing values.

I.4.1 Probabilistic forecasting and automatic feature selection

Section I.2.2 discussed some of the most relevant characteristics of renewable energy genera-
tion. One of those characteristics is spatial smoothing, which is particularly relevant when ag-
gregating RES plants as a VPP. However, such a VPP requires significantly more input features
since it is likely to cover a much wider area and multiple resources. Two of the challenges that
arise when one includes more features are: (i) features may be multicollinear, which is to say
that one feature is a (near) linear combination of other features; and (ii) the curse of dimen-
sionality, i.e., when there are simply not enough observations relative to the number of features
for a model to learn a meaningful relationship. In other words, feature selection is important to
discard redundant features so as to reduce time complexity and retain accuracy.

Feature selection can be categorized into three classes: (i) filtering methods; (ii) wrapper meth-
ods; and (iii) embedded methods (Guyon and Elisseeff, 2003). Filtering methods are model
agnostic; features are ranked based on a score, e.g., Pearson correlation, and a subset is se-
lected. Yang recently employed an ultra-fast similarity search algorithm to preselect relevant
features (Yang, 2018). It is also possible to statistically determine a threshold distance beyond
which information is excluded (Yang et al., 2014) or build regime-based models based on wind
direction (Amaro e Silva et al., 2019).

Wrapper methods are easily the most computationally intensive out of the three classes; the aim
is to recursively subset the feature set, learn a forecast model and compare its output to that of
other forecast models on other feature subsets. Owing to their computational burden, wrapper
methods are not common. One example is that of van der Meer et al. (2018), who attempted
a brute-force search into the best performing subset of relevant endegenous features.

The embedded methods, such as Lasso regression (Tibshirani, 1996), embed feature selection.
There is a long list of studies that employ embedded methods because they can be used as
stand-alone forecast models or as a regularizer to constrain the model parameters. For instance,
Agoua et al. (2018) combined Lasso with quantile regression, whereas Yang et al. (2022) first
filtered features using a preselection algorithm after which Lasso-penalized quantile regression
was used to generate forecasts.
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I.4.2 Probabilistic forecasting and optimal forecast combination

As mentioned above, the aim in probabilistic forecasting is to maximize sharpness subject to cal-
ibration. However, it is often the case that forecasts are not calibrated. For instance, the power
may be overestimated or the predictive distributions are underdispersed. In that case, postpro-
cessing techniques such as Ensemble Model Output Statistics (EMOS, (Gneiting et al., 2005)) or
Bayesian Model Averaging (BMA, (Raftery et al., 2005)) can be used to remove miscalibration.
EMOS takes poor man’s ensemble members as input and outputs a parametric PDF. On the
other hand, BMA dresses the members of a dynamical ensemble with parametric PDFs and lin-
early combines these using weights that represent the posterior model probability.3 Many more
methods have been proposed; for an overview the reader is referred to the book by Vannitsem
et al. (2019).

This report focuses on the combination of predictive distributions to improve the calibration and
potentially sharpness. An important advantage of forecast combination is to reduce the overall
uncertainty that arises when selecting a model g, estimating parameters θ̂ or using the available
information Ωt. Heuristic, linear and nonlinear combination methods can be used to combine
predictive distributions. A typical example of a heuristic combination method is the opinion
linear pool (OLP) in which predictive distributions are linearly combined with equal weights as-
signed to the experts that produced the forecasts, a method that was introduced already in
1961 (Stone, 1961). Other heuristics exist as well, such as trimming the outer- or innermost predic-
tive distributions; see Yang and van der Meer (2021) for an overview.

An extension of OLP is the traditional linear pool (TLP) in which weights wj∀j = 1, · · · ,m are de-
termined by optimizing a loss function (Gneiting and Ranjan, 2013) or based on the inverse of
the error of each forecast model (Pauwels and Vasnev, 2016). The CRPS has been used as a
loss function to optimize the combination weights of TLP in (Bracale et al., 2017). However, one
challenge of such a “static” approach is that these optimal weights do not necessarily perform
best on a testing set, something that has been coined the “forecast combination puzzle” and
may be caused by variance induced by weight optimization on a small training set (Claeskens
et al., 2016). To deal with structural breaks in time series, Thorey et al. (2018) developed an online
optimization of the CRPS to linearly combine forecasts, which improved the calibration although
underdispersion remained. Berrisch and Ziel (2021) went further and hypothesized that different
experts may perform differently over time and within their forecast distributions and therefore
developed the fully adaptive Bernstein online aggregation method for pointwise CRPS online
learning.

Gneiting and Ranjan (2013) provided theoretical results that indeed TLP is limited in its flexibility.
Therefore, they introduced nonlinear combination methods, specifically the spread-adjusted
linear pool (SLP) and the beta-transformed linear pool (BLP). In their work, Gneiting and Ranjan
(2013) showed that the probability integral transform variables of beta-transformed predictive
distributions F̂t+k|t(Yt+k) can attain any value in the interval (0, 1

4 ), where 1
12 indicates neutrally

dispersed forecasts. SLP was used by Möller and Groß to calibrate the ensemble prediction
system of the European Center for Medium-range Weather Forecasts (ECMWF) (Möller and Groß,
2020). BLP was used in the frame of GDP forecasting (Lahiri et al., 2015) and solar irradiance
forecasting (Fatemi et al., 2018). As a conclusion, there is need for additional study into nonlinear
combination methods applied to renewable energy power production.

3A poor man’s ensemble is a collection of unperturbed numerical weather prediction (NWP) forecasts from different
providers, whereas a dynamical ensemble is a collection of NWP forecasts from the same model but with slightly different
initial conditions.
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I.4.3 Seamless scenarios at very high temporal resolution

The forecaster communicates his or her uncertainty through the issued probabilistic forecasts.
However, recall that renewable power generation is a stochastic process and that there exists
a relationship over time and space. Therefore, a forecast error at t + k is likely to propagate to
t + k + 1, which is important to consider when optimizing battery control (van der Meer et al.,
2021) or offering automatic frequency restoration reserve (aFRR) and energy on the day-ahead
market (Camal et al., 2019). A similar argument can be made for the case where spatial fore-
casts are issued. As a consequence, it can be valuable to issue so-called scenario or trajec-
tory forecasts. In a purely temporal setting, the forecaster aims to approximate the multivariate
distribution using S scenarios with maximum forecast horizon K:

(
x(1) x(2) · · · x(S)

)⊤
, where

x(s) =
(
x
(s)
t+1|t x

(s)
t+2|t · · · x

(s)
t+K|t

)
.

Such trajectory forecasts can be generated using the combination of a forecast model for each
forecast horizon k = 1, . . . ,K and a covariance matrix that describes the temporal dependen-
cies. Recall that a series of forecasts with horizon k is said to be calibrated when Pk = ˆFt+k|t(Yt+k

is uniformly distributed, i.e., Pk ∼ U [0, 1]. It is then possible to transform Pk to a standard normal
random variable Zk ∼ N (0, 1) using the inverse Gaussian CDF:

zk,t = Φ−1 (pk,t) , ∀t (18)

where pk,t is an instant from Pk at time t. Given k = 1, . . . ,K forecast horizons, the result is a
multivariate normal distribution such that Z ∼ N (µ0,Σ). Here, µ0 is a vector of zeros and Σ is a
covariance matrix that describes the temporal dependencies with ones on its diagonal (Pinson
et al., 2009). An unbiased estimate of Σ is (Pinson et al., 2009):

Σ =
1

N − 1

N∑
i=1

ZiZ
⊤
i . (19)

Using a multivariate normal random number generator with inputs µ0 and Σ, it is possible to
sample S K-dimensional vectors. These can be transformed to uniform variables Pk using the
standard normal CDF Φ:

ps,k = Φ(zs,k) . ∀s, k (20)

These autocorrelated standard uniform samples can finally be used in combination with the
predictive distributions F−1

t+k|t to generate trajectory forecasts fs,t+k|t:

fs,t+k|t = F−1
t+k|t (ps,k) . ∀s, k (21)

This method is currently the de facto approach to generate trajectory forecasts, see, e.g., (Pin-
son, 2013; Camal et al., 2019, 2018; van der Meer et al., 2021). Even though the above-described
method is computationally manageable for intra-day or even day-ahead trajectories at hourly
resolution, it becomes more challenging when drastically increasing the temporal resolution. For
instance, a forecast horizon of 24 hours with a temporal resolution of 1 minute requires 1,440
forecast models, whereas a forecast horizon of 48 hours with a temporal resolution of 5 minutes
requires 576 forecast models.

Such high-resolution forecasts may become necessary to perform security-constrained unit com-
mitment on islands featuring high RES penetration and without backup of large-scale synchronous
generators. In such a setting, it is pertinent to mitigate critical disturbances such as fast ramps
of RES production on both the intra-day and day-ahead horizon. In this part of the report, a
seamless model is introduced that generates trajectory forecasts at a fraction of the time while
delivering similar performance as the state-of-the-art.
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I.4.4 Hierarchical forecasting with missing data

Traditional approaches for hierarchical forecasting (Petropoulos et al., 2022), i.e., forecasting a
group of time series that satisfy a set of linear aggregation constraints, include the bottom-up
and the top-down. The bottom-up approach involves forecasting the bottom-level series and
aggregating them; however, it usually performs poorly as the signal-to-noise ratio tends to be
lower at the bottom-level series. Further, the top-down approach may introduce forecast bias.
Thus, a significant body of research focuses on two-step methods, where each series is modeled
independently, with individual (named base) forecasts being reconciled in a post-processing
step. Wickramasuriya et al. (2019) reconciled unbiased base forecasts by minimizing the trace
of the forecast error covariance matrix. Van Erven and Cugliari (2015) proposed reconciliation
by weighted projection of base forecasts. A constrained multivariate regression framework is de-
scribed by Di Modica et al. (2021), considering both batch and online learning, applied in wind
power forecasting. Moving beyond point forecasts, Taieb et al. (2017) described a bottom-up
approach for coherent probabilistic forecasts, while Yang (2020) proposed a block bootstrap
method for probabilistic photovoltaic (PV) production forecasts. Recently, end-to-end learning,
i.e., training a single model to predict all series in one-shot, has begun to attract attention, as it
directly leverages dependencies across series. A deep learning model, with an internal projec-
tion step, is presented by Rangapuram et al. (2021) for coherent probabilistic forecasts. Lastly, a
general framework for end-to-end forecasting of predictive quantiles is proposed by Han et al.
(2021).

Regarding missing values, a recurring assumption in the literature is that training observations are
coherent by construction. In practice, however, missing or erroneous values are commonplace
due to communication failures or equipment malfunctions. Two main approaches are identi-
fied for dealing with missing values. The first is to ignore observations with missing values (i.e.,
complete case analysis), which is typically applied in the works mentioned above. However, in
an end-to-end learning setting, disregarding observations leads to significant information loss.
Further, if data are not missing at random, bias might be introduced. The second approach
involves missing data imputation; in turn, this raises the problem of ensuring that imputed values
are coherent. To this end, Liu et al. (2015) proposed an iterative algorithm to impute missing val-
ues while exploiting dependencies across series. The present work examines the case of missing
values in the lower levels of the hierarchy, but accurate measurements in the upper levels, which
is of practical interest in power system applications. For example, smart-meters might fail to
transmit consumption data at a household level while the respective distribution feeder properly
measures aggregated demand.

I.5 Contributions

The present report contributes to the state-of-the-art on the topic of probabilistic and multivari-
ate forecasting of the output of RESs organized as a VPP. Specifically, the contributions can be
summarized as follows:

• As more and more data become available, it becomes increasingly challenging to extract
useful information due to multicollinearity of the features and the curse of dimensionality. To
that end, filtering methods are applied to generate a feature subset with less redundancy
in a model agnostic approach. Filters based on mutual information have the advantage
that they can uncover nonlinear relationships and allow for automatic feature selection.
As such, they can be used efficiently in an operational setting. This approach significantly
improves the computational performance although the individual forecasts become un-
derdispersive.

• Underdispersed forecasts stem from overconfident forecast models, which in this case is
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caused by feature subsets that do not completely represent the original feature set. The
combination of probabilistic forecasts is a powerful method to mitigate overconfident mod-
els. Here, linear and nonlinear combination methods are investigated that substantially
improve the calibration of the probabilistic forecasts compared to the original ones. Fur-
thermore, it leads to interesting perspectives for future works.

• Future power system operation requires probabilistic forecasts that are correlated in time
and/or space at high temporal and spatial resolution. The current state-of-the-art then
becomes computationally too intensive and alternative methods are required. To that
end, a pattern matching algorithm is proposed that downscales NWP ensemble forecasts
to multivariate probabilistic power forecasts at any temporal resolution lower than or equal
to the native resolution. The proposed algorithm significantly reduces the computational
burden and simplifies the forecast model chain, while the use of kd-tree ensures that the
model can be applied to any RES power forecasting problem.

• Finally, missing values are commonplace in power systems. However, simply ignoring these
may introduce biases if the source of the missing values is systematic. As of now, there is
a knowledge gap on how to handle missing values in a hierarchical setting. Therefore, a
decision tree algorithm for end-to-end forecasts with missing values is proposed that does
not require imputation and fully utilizes the available training data.
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II. Seamless multi-source univariate and multivariate
probabilistic forecasting

II.1 Introduction

The methodology described in this chapter is based on two studies. The first study concerns
high-dimensional data—data from various source such as satellite imagery or NWP forecasts—
and how these can be used operationally. This study also concerns forecast combination as a
means to reduce the uncertainty introduced when reducing the dimensionality of the data set.
Here, the forecasting algorithm itself is not a novelty but based on the state-of-the-art. Section II.2
describes the methods employed in the first study.

Whereas the first study focuses on probabilistic forecasts, the second study focuses on a tempo-
ral sequence of probabilistic forecasts, i.e., trajectory forecasts. Instead of focusing mainly on
the input features, here the focus lies on how to speed up the de facto method described in
Section I.4.3, which is relevant when moving to very high temporal resolution and operational
settings. Section II.3 details the forecast methods for both the first and the second studies, where
the latter is a novel contribution as mentioned.

II.2 Managing high-dimensional data and forecast uncer-
tainty

A particular challenge that arises when aggregating multiple RESs over space and time is that
the number of input features sharply increases. However, when we remove features, are we
certain that the “right” features have been removed? Sections II.2.2 and II.2.3 describe the
methodologies that we propose to deal with the issues of data dimensionality and forecast
uncertainty. First, Section II.2.1 gives a succinct description of the types of input features, which
will later be expanded when describing the case studies of the deliverable.

II.2.1 Input features

Consider a single PV plant at a single forecast horizon. Then, a forecaster could consider as input
features a forecast issued by the NWP forecast provider for the nearest grid point. These features
could, for example, be temperature, wind speed and global horizontal irradiance. In case of a
VPP and multiple forecast horizons, these inputs are distributed over space and time.

It is likely that only a subset of the available features is relevant at a particular point in time and
the relevance of the features may vary over time. In addition, feature redundancy can cause
computational issues for machine learning methods and unnecessarily increases the compu-
tational burden. However, there is no guarantee of selecting the optimal feature subset in a
reasonable amount of time, which could become a problem in an operational setting.

In light of the aforementioned issues, this deliverable investigates filtering as a means to select
relevant features. There is a multitude of filters, which will be introduced in the following section,
and each will result in a different forecast. Section II.2.3 introduces the methods to optimally
combine the forecasts that result from the various filters.
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II.2.2 Automatic feature selection

As mentioned in Section I.4.1, feature selection can be divided into filtering methods, wrapper
methods and embedded methods. Here, the focus is on filtering methods because they are
model agnostic and fast, which means they can be used in an operational setting. Essentially, a
filter computes a score that ranks the importance of features. The aim is to find a feature subset
S from the complete feature set X that represents the target variable Y with high accuracy and
minimal residual uncertainty (Bommert et al., 2020).

In this deliverable, the filtering methods are based on mutual information, which originates from
information theory and describes the amount of information that can be known about random
variable Y when knowing random variable X (Bommert et al., 2020). First, it is helpful to introduce
the entropy of a discretized random variable Y with univariate probability mass function p, i.e.,
a discrete version of a PDF (Bommert et al., 2020):

H(Y ) = −
∑
y

p(y)log2 (p(y)) , (22)

which measures the uncertainty of Y . Furthermore, the conditional entropy of Y given X is
defined as (Bommert et al., 2020):

H(Y |X) =
∑
x

p(x)

(
−
∑
y

p(y|x)log2 (p(y|x))

)
. (23)

The mutual information between Y and X is defined as I(Y ;X) = H(Y )−H(Y |X) and describes
how the uncertainty of Y is lowered by knowing X (Bommert et al., 2020). Herein, the praznik
package (Kursa, 2020) in the statistical software R is used. The praznik toolbox discretizes the
range of the continuous features into max{min{n

3 , 10}, 2} equally spaced intervals, where n is the
number of training samples (Kursa, 2020).

In total, 6 filtering methods based on mutual information are used. The first filter, mutual infor-
mation maximization (MIM), computes the mutual information between feature i and target
variable Y as:

JMIM(X(i)) = I(Y ;X(i)), (24)

and returns a predetermined number of features that maximizes J (Kursa, 2020).

The remaining filters greedily add a feature to S that at each iteration maximizes the score
J(X(i)). The first of which is minimal conditional mutual information (CMIM), which uses the fol-
lowing score

JCMIM(X(i)) = min
{
I(Y ;X(i)), min

X(j)∈S
I(Y ;X(i)|X(j))

}
, (25)

where I(Y ;X(i)|X(j)) = H(Y |X(j)) −H(Y |X(i), X(j)) Kursa (2020). In words, CMIM describes how
knowing X(i) lowers the uncertainty of Y given that we already know X(j) and is therefore similar
to MIM.

The third filter is conditional mutual information (CMI), which ranks features according to the
score:

JCMI(X
(i)) = I(Y ;X(i)|S), (26)

and therefore evaluates the added value of feature X(i) considering the already selected fea-
tures.
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The fourth filter is double input symmetrical relevance (DISR), which uses the score (Kursa, 2020):

JDISR(X
(i)) =

∑
X(j)∈S

I(Y ;X(i), X(j))

H(Y,X(i), X(j))
, (27)

where I(Y ;X(i), X(j)) evaluates the complementary information that X(i) and X(j) provide for Y ,
whereas the normalization term H(Y,X(i), X(j)) reduces the possibility to choose highly variable
features (Bommert et al., 2020).

Maximum relevance and minimum redundancy (MRMR) is the fifth filter and ranks the features
according to the following score:

JMRMR(X
(i)) = I(Y ;X(i))− 1

|S|
∑

X(j)∈S

I(X(i);X(j)), (28)

which ensures minimal redundancy between X(i) and S (second term) while providing maximal
information about Y (Kursa, 2020).

The final filter is minimal normalized joint mutual information (NJMIM) and scores the features
according to the following equation (Kursa, 2020):

JNJMIM(X(i)) = min
X(j)∈S

{
I(Y ;X(i), X(j))

H(Y,X(i), X(j))

}
. (29)

In essence, this is a modification of filter DISR that evaluates the minimal relative information
between Y , X(i) and already selected features instead of the sum (Bommert et al., 2020).

The filters are applied to data that comprise the d previous days recorded during the same time
stamp as the forecast issue time t (expressed as “HH:MM”). In this way, it is possible to include
the most recent data in our filtering method. In order to account for temporal dependencies,
one time instant prior to “HH:MM” and one time instant after “HH:MM” (except for t+1) are also
included. As a result, there are a total of 3 · d− 1 time instances available to the filters.

These filters have been selected because they (i) can uncover nonlinear relationships; (ii) do
not require the features to be on the same scale; (iii) perform decently as Bommert et al. (2020)
concludes; (iv) tend to select a diverse set of features at time t (Bommert et al., 2020), which
could benefit forecast diversity; and (v) except for MIM, take interactions between features into
account.

II.2.3 Probabilistic forecast combination

As mentioned above, OLP is a heuristic method in which m predictive distributions Fj are linearly
combined as G =

∑m
j=1 wjFj wj = 1/m. However, it has been shown that it is possible to improve

upon OLP by the optimizing weights wj using a scoring rule such as (10). In this deliverable
the logarithmic score (IGN), as proposed by Gneiting and Ranjan (2013), is used to optimize the
weights wj and potential additional parameters on a validation set separate from the testing set.
The following describes the three combination methods, while OLP is kept as a naive reference
method.

II.2.3.1 Linear Combination The natural extension of OLP is the traditional linear pool (TLP), in
which the weights are determined by optimizing the logarithmic score. The weights can be de-
termined by evaluating gi(y) =

∑m
j=1 wjfij(y), where i is an index for training data, and minimizing
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over n fitting samples:

IGN = − 1

n

n∑
i=1

log

 m∑
j=1

wjfij(yi)

 , (30)

which is equivalent to maximizing the log-likelihood (Yang and van der Meer, 2021). When the
component forecasts are neutrally- or over-dispersed, the TLP will only be worse than the com-
ponent forecasts because the linear combination always increases dispersion (cf. Theorem 3.1
in Gneiting and Ranjan (2013)).

II.2.3.2 Nonlinear combination Nonlinear combination methods allow more freedom and avoid
introducing overdispersion. The first nonlinear combination method considered here is the spread-
adjusted linear pool (SLP) that includes a strictly positive parameter c that adjusts the spread of
the predictive distributions. The combined predictive distribution is defined as (Gneiting and
Ranjan, 2013):

Gc
i (y) =

m∑
j=1

wjF
0
ij

(
y − µij

c

)
, (31)

where Fij = F 0
ij (y − µij) and µij is the median of predictive distribution of Fij . The parameters

can be found by modifying (30) as follows:

IGN = − 1

n

n∑
i=1

log

1

c

m∑
j=1

wjf
0
ij

(
yi − µ∗

ij

c

) . (32)

Equation (31) shows that SLP reduces to TLP when c = 1. Setting c < 1 tends to improve calibration
when the individual predictive distributions are overdispersed or neutrally dispersed and setting
c ≥ 1 may benefit underdispersed predictive distributions. While SLP is more flexible than TLP, it is
not flexible enough to be used when the component forecasts are overdispersed (Gneiting and
Ranjan, 2013).

The beta-transformed linear pool is fully flexible. The CDF of the beta-transformed linear pool is
defined as

Gα,β
i (y) = Bα,β

 m∑
j=1

wjFij(y)

 , (33)

where Bα,β represents the beta CDF with parameters α > 0 and β > 0, and BLP reduces to
TLP when α = β = 1. When fixing the weights w1, . . . , wm, it can be shown that the variance of
the PIT random variable can attain any value in the open interval

(
0, 1

4

)
(Gneiting and Ranjan,

2013).4 The following objective function is minimized to learn the optimal parameters (Gneiting
and Ranjan, 2013):

IGN = − 1

n

n∑
i=1

(α− 1) log

 m∑
j=1

Fij(yi)

+ (β + 1) log

1−
m∑
j=1

Fij(yi)

 . (34)

4Note that when the variance of the PIT variables is 1
12

, the probabilistic forecasts are neutrally dispersed.
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Figure 3 A flowchart of the pre-process, forecast, and post-process steps.

The methodology of feature selection and forecast combination to deal with high-dimensional
data and forecast uncertainty is presented as a flowchart in Fig. 3. The Analog Ensemble (AnEn)
probabilistic forecast model will be introduced in Section II.3.1. In essence, the filters introduced
above are applied to all data sources, i.e., NWP, satellite (SAT), solar geometry (CLS) comprising
the zenith angle and the solar azimuth, and measurements (VPP). The selected features are
used in separate forecast models, which are then combined using any of the four combination
methods described above.

II.3 Forecasting

This section describes the forecasting methods used in this deliverable. Note that the proba-
bilistic forecasts described in Section II.3.1 are not novel; rather, the novelty there lies in the way
features are automatically selected and forecasts are combined.

II.3.1 Probabilistic forecast generation

Ensemble NWP forecasts were already proposed by Epstein in 1969 (S., 1969), after Lorenz in 1963
noted that the lack of complete observation of the atmosphere as well as model uncertainty
results in diverging outcomes between the observed and predicted state of the atmosphere
(Lorenz, 1963). In order to generate an ensemble forecast, one can either combine multiple
deterministic NWP forecasts (i.e., a poor man’s ensemble) or perturb initial conditions slightly
and run these concurrently (i.e., a dynamical ensemble). In either case, the effort is significant
because a multitude of computational runs are necessary. Instead, Delle Monache et al. (2013)
proposed AnEn as a means to generate probabilistic forecasts, which was a departure from
previous uses of AnEn, e.g., related to calibration of NWP forecasts.

In essence, AnEn works by comparing the current NWP forecast, the “query”, to a history of
NWP forecasts, the “analogs”. The query and analogs are compared based on similarity using
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the Euclidean distance and the most similar analogs are selected. The final forecast is then an
ensemble of the power measurements that correspond to the time stamps of the most similar
analogs. In order to include additional data sources, the original similarity metric is modified
(Carriere et al., 2020). The similarity metric is further modified such that the lags of the features
are distinct features, in order to leverage the algorithmic efficiency of k-dimensional tree (kd-
tree) (Yang, 2019; Yang and van der Meer, 2021). The similarity metric then becomes:

d(X k
t ,A

k
i ) =

√√√√ J∑
j=1

wk
j

(
x
(j)
t − x

(j)
i

)2
, (35)

where J = Nv · (2t̃ + 1) is the total dimension, wk
j is the jth weight for the kth forecast horizon

and x(j) is the jth feature. In (35), vector X k
t contains the most recent filtered features, whereas

vector Ak
i contains the same filtered features as X k

t except the historical ones. It is important to
note that the features in Ak

i are scaled and centered to ensure the distance metric does not
favor features on a larger scale. These scaling factor are then used to scale and center X k

t .

Finally, it is important to note that the weights wk
j in (35) are taken directly from the scores that

the filtering methods assign to the features. Subsequently, the weights are normalized by the
sum of all feature scores to ensure that the weights sum to 1. This method affords a dynamical
update of the feature weights rather than employing a costly wrapper.

II.3.2 Seamless trajectory forecasts

Section I.4.3 described the de facto method to generate trajectory forecasts. There, it was
argued that the method becomes cumbersome when significantly increasing the temporal res-
olution of the forecast, e.g., up to 5 minutes or 1 minute. For a temporal resolution of 5 minutes,
as in this deliverable, one would need to generate 576 univariate, i.e., marginal predictive dis-
tributions when considering a forecast horizon of 48 hours. In the following, we describe an
alternative that simplifies the forecast modeling chain substantially.

The pattern matching model (PMM) proposed here is conceptually straightforward and is based
on AnEn described in Section II.3.1. However, the innovation is to search for S analog trajectories
to approximate the multivariate predictive CDF Ft, rather than searching for analogs for a single
forecast horizon to approximate Ft+k|t. Therefore, Ai contains the analog NWP forecast issued
at historical time i organized as one vector, instead of only extracting i+ k− 1, i+ k and i+ k+1.
Similarly, X t contains the query NWP forecast issued at testing time t. Then, using the algorithmic
efficiency of kd-tree as mentioned above, it is possible to compute the distances using (35) as
before. Note that wj = 1 ∀ j for simplicity but this could be extended in future work, e.g., by using
filters as in the previous section. Furthermore, all features are again scaled and centered using
the historical analogs and these factors are then applied to the query.

The S most similar analog time stamps i are selected and the accompanying power measure-
ments from time i up to time i + K constitute the multivariate probabilistic forecast, such that
Ft ∈ RS×K and the corresponding observations are yt ∈ RK . In other words, PMM is a downscal-
ing method in which time series at low resolution are compared, after which a high resolution
time series can be extracted.

II.3.3 Hierarchical forecasts with missing values

II.3.3.1 Hierarchical forecasts Equation (16) from Section I.3.5 states that hierarchical obser-
vations are coherent if the difference between the top nodes and bottom nodes is zero. Fur-
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thermore, define S := {y | Ay = 0} to be the feasible set that satisfies the linear aggregation
constraints. The following assumption is commonplace in the literature.

Assumption 1 Historical observations yt are coherent by construction, i.e., yt ∈ S ∀t ∈ [T ].

The following definition can be constructed for coherent forecasts, similar to that of the mea-
surements.

Definition 1 Forecasts ŷt+k are said to be coherent if they satisfy Aŷt+k = 0.

As argued above, the base forecasts will likely not satisfy the coherency constraints and a post-
processing step is thus required. The following shows that a class of non-parametric machine
learning models directly provides coherent point forecasts. First, we state a standard result from
convex analysis.

Proposition 1 Any convex combination of historical observations yt satisfies the coherency con-
straints.

Proof This follows from convexity of S and Assumption 1. □

The above holds for additional convex constraints, e.g., non-negativity of forecasts. A corol-
lary of Proposition 1 is that a class of machine learning models, including, among others, k-
nearest neighbors, kernel regression, and decision trees, directly leads to coherent forecasts.
These models are based on the idea of local averaging or smoothing of historical observa-
tions. For an out-of-sample observation xt+k, we derive a set of non-negative weights ωt(·), with∑

t∈[T ] ωt(xt+k) = 1, and the respective point forecast ŷt+k is given by

ŷt+k =
∑
t∈[T ]

ωt(xt+k)yt, (36)

i.e., a convex combination of historical observations. From Proposition 1, we see that ŷt+k are
coherent. The practical implication is that off-the-shelf machine learning tools are readily ap-
plicable for end-to-end hierarchical forecasting. This result is somewhat trivial; nonetheless, it
seems to have escaped the respective forecasting literature.

The above-mentioned models can also be employed for probabilistic hierarchical forecasting.
For example, the selected neighbors yt in a k-nearest neighbor model can be treated as (co-
herent) sample path realizations of the joint predictive density of all the series in the hierarchy.
Similarly, one could treat the output of individual trees within an ensemble as realizations of the
multivariate predictive density. Therefore, off-the-shelf machine learning tools are also applica-
ble to probabilistic hierarchical forecasting, presenting a computationally cheaper alternative
to the internal sampling and projection approach proposed by Rangapuram et al. (2021) and
the bottom-up method described by Taieb et al. (2017).

II.3.3.2 Dealing with missing values Recall that we extend the hierarchical forecasts with the
case when bottom-level series have missing values due to equipment failures, but aggregated
series maintain correct measurements. Assume that missing values are set at 0, therefore Ayt ̸= 0
and yt ̸∈ S. Without loss of generality, the term “missing” refers both to missing and erroneous
measurements, as long as these are identified, e.g., by applying an outlier detection mecha-
nism, and the missing values do not propagate through the hierarchy. This problem is examined
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under a conditional stochastic optimization lens by integrating predictive and prescriptive an-
alytics (Bertsimas and Kallus, 2020), and by formulating prescriptive trees for end-to-end hierar-
chical forecasting. Prescriptive trees (Stratigakos et al., 2022) refer to decision trees that output
prescriptions rather than predictions. In our case, and with a slight abuse of terminology, the
prescriptions correspond to hierarchical point forecasts, which must satisfy the coherency con-
straints (and possibly additional ones). Out-of-sample conditional prescriptions are derived via a
weighted Sample Average Approximation (SAA) of the original stochastic optimization problem
(Bertsimas and Kallus, 2020).

We follow the popular CART method (Breiman et al., 1984) by recursively partitioning the feature
space with locally optimal splits. Mathematically, a node split separates a feature space R ⊆
RT×p of T observations and p features at feature j and point s into two disjoint partitions R =
Rl ∪ Rr, such that Rl = {t ∈ [T ] | xtj < s} and Rr = {t ∈ [T ] | xtj ≥ s}, with scalar xtj denoting
the t-th observation of the j-th feature5. The main idea of the node split is to partition the data
such that similar observations are clustered into the partitions. Here, we minimize a generic cost
function subject to a set of linear aggregation constraints. The problem of finding the locally
optimal split is given by

min
j,s

min
zl∈S

∑
t∈Rl(j,s)

c(zl;xt) + min
zr∈S

∑
t∈Rr(j,s)

c(zr;xt)

 , (37)

with subscripts l, r referring to the left and right child node, z{l,r} ∈ Rn being the locally constant
decisions (i.e., hierarchical forecasts), which satisfy the coherency constraints S, R{l,r} being
index sets, and c(·) being the cost function to be minimized. Thus, the main difference from the
CART algorithm is the requirement for predictions to satisfy a set of constraints and the use of a
generic, task-based loss function.

In a typical regression setting, c(·) would correspond to the squared ℓ2 norm. Here, we want to
ignore missing values, without disregarding any quality data points. To this end, we employ an
indicator matrix Γ ∈ {0, 1}n×T that checks whether historical observations are missing. A single
entry γ of Γ is given by

γit =

{
1, if yit is missing
0, otherwise

∀i ∈ [n], t ∈ [T ], (38)

and the cost of sample t is given by

c(·) = ∥yt − (1− γt)⊙ z∥22, (39)

with γt denoting the t-th column vector of Γ and ⊙ denoting the elementwise multiplication.
Note that missing values are effectively left out of the objective. This way the optimization pro-
cess places more value/weight on series without any missing values during training. We consider
this to be a desirable property, as these series correspond to more reliable nodes within the
hierarchy.

As discussed, forecasts are required to satisfy the coherency constraints imposed by S. Note that
(37) involves two equality constrained quadratic sub-problems. An analytical solution is derived
by solving a system of linear equations obtained from the Karush–Kuhn–Tucker (KKT) optimality
conditions (see Appendix IV). Other possible constraints, e.g., non-negativity or monotonicity,
can be readily included. In this case, a general-purpose convex solver can be called on to
evaluate (37). For an out-of-sample observation xt+k point forecasts are derived via a weighted
SAA given by

ŷt+k = argmin
z∈S

∑
t∈[T ]

ωt(xt+k)∥yt − (1− γt)⊙ z∥22. (40)

5For brevity of exposition we focus on quantitative features, although it is straightforward to also include categorical
features
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In general, decision trees are highly prone to overfitting. Randomization-based ensembles pro-
vide a remedy and lead to impressive predictive performance; these are readily applicable
within the proposed framework, leading to a prescriptive forest. A single tree is fully compiled,
with its leaves outputting coherent forecasts. The corresponding weights are given by

ωt(xt+k) =
I[R(xt) = R(xt+k)]

|R(xt+k)|
, (41)

where R(xt+k) is the leaf that out-of-sample observation xt+k falls into, | · | the leaf cardinality,
and I[·] an indicator function that checks whether training observation xt falls into R(xt+k). Lastly,
for an ensemble of B trees the weights are obtained

ωt(xt+k) =
1

B

B∑
b=1

I[Rb(xt) = Rb(xt+k)]

|Rb(xt+k)|
. (42)

II.4 Description of case studies

The case studies presented in this section employ data made available by the partners. The
case studies pertain to the three topics of this report: (i) intra-day probabilistic forecasting of the
power output of a VPP located in mid-west France using a heterogeneous set of input data;
(ii) intra-day and day-ahead probabilistic multivariate forecasts of the power output of a VPP
located in Greece; and (iii) day-ahead hierarchical point forecasts with missing values of the
same VPP as in (i). The following sections detail the case studies and the final section introduces
the benchmark models.

II.4.1 Case study I

In the first case study, the aim is to include a heterogeneous set of input features for intra-
day forecasting, i.e., up to 6 hours ahead, in mid-west France. The inputs comprise NWP fore-
casts, satellite derived GHI maps, astronomical data and measurements. Figure 4 provides an
overview of the location of the PV systems, wind turbines and grid points of NWP and satellite
features. More specifically, the European Center for Medium-range Weather Forecasts (ECMWF)
provides NWP forecasts that are issued daily at 00:00 UTC with a spatial resolution of 0.1° × 0.1°.
Although these forecasts comprise a multitude of features, here 5 features are extracted. Specifi-
cally: (i) surface solar radiation downwards (SSRD); (ii-iii) 100 m U- and V-wind speed (U100, V100);
(iv) 2 m temperature (T2M); and (v) total cloud cover (TCC). GHI is computed from SSRD and the
deterministic component of GHI, i.e., irradiance under clear-sky conditions, is removed by divid-
ing GHI by the clear-sky irradiance6 using the McClear clear-sky model (Lefèvre et al., 2013).

The satellite images have been recorded by the Meteosat Second Generation (MSG) satellite.
Afterwards, GHI can be derived from these images using an improved version of the Heliosat-2
method (Zarzalejo et al., 2009) and these GHI maps are stored as time series for each grid point.
Also in this case, the GHI is detrended using clear-sky irradiance such that the input feature is the
clear-sky index.

The solar geometry (CLS) can be computed with very high accuracy at any point in the future
and they inform the model as to when the sun rises and sets. Especially in the case when the
VPP consists only of PV systems, this could be important information for the diurnal intermittency.

Finally, the power measurements are available from 2019-01-01 until 2020-09-30. The data from
2019-01-01 until 2019-09-30 is used as the historical analogs. The period from 2019-10-01 until

6This quantity is referred to as the clear-sky index.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

29



D3.2 Towards a generic seamless forecasting approach

45.9

46.2

46.5

46.8

0.0 0.5 1.0
Longitude (degrees)

La
tit

ud
e 

(d
eg

re
es

)

NWP

SAT

WIND

PV

Figure 4 Overview of the satellite and NWP grid points, as well as the PV systems and wind turbines located
in mid-west France.

2019-12-31 is used to optimize the combination weights, which is not necessarily a representative
period but since we are dealing with time series, we want to maintain the chronological order of
observations while keeping ample instances for testing. The remaining data from 2020-01-01 until
2020-09-30 is used for model testing. In the case of a PV only VPP, measurements recorded at a
zenith angle larger than 85° are removed. The reason for removing measurements is that small
errors in the clear-sky profile at high zenith angles can result in significant errors. Furthermore, a
quality control similar to that proposed by Killinger et al. (2017) is used on the measurements.
Briefly, the quality control: (i) ensures all time series are at the same temporal resolution; (ii)
flags any instance higher than the physical limit based on the extraterrestrial irradiance or lower
than zero, as well as power measurements when the zenith angle is greater than 95°; and (iii)
compares measurements with overall daily variability (Killinger et al., 2017). In addition, the PV
power is detrended using the clear-sky global tilted irradiance (GTIcs) with one tilt and orientation
because the systems are located near each other. Regarding the wind power measurements,
these are checked whether they are nonnegative and do not exceed the installed capacity.
The PV VPP has a total installed capacity of 4 MW, whereas the wind and PV VPP has a total
installed capacity of 124 MW.

In this case study, filters are tested to reduce the dimensionality of feature set and speed up
the computations. To cope with potentially too stringent filters, forecast combination is used as
a tool to mitigate some of these uncertainties. These methods have been presented in Sec-
tions II.2.2 and II.2.3.
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Figure 5 Overview of the NWP grid points on and around the island of Rhodes (Greece) at which forecasts
are available.

II.4.2 Case study II

Unlike the previous case study, here the focus is on investigating whether a straightforward ap-
proach such as the one described in Section II.3.2 can improve upon, or at least equal, the
state-of-the-art described in Section I.4.3. To isolate as much as possible the performance of
the model itself, the focus is on one set of input features, namely NWP ensemble forecasts from
ECMWF. This case study takes place on Rhodes, which is a Greek island. Figure 5 presents the
66 grid points at which 50 ensemble members have been collected (Leutbecher and Palmer,
2008) that predict the progression of 5 variables, initiated daily at 00:00 UTC. The 5 variables se-
lected are SSRD converted to GHI and then clear-sky index, TCC, U10, V10 and T2M. A large
number of grid points has been included to capture large scale weather patterns, while the
ensemble members inform about the variability present in the forecasts. The query X t therefore
has a length of 48 × 66 × 50 × 5 = 792, 000, which is reduced by summarizing the grid points and
ensemble members by: (i) the mean and standard deviation of the ensemble members at each
grid point, resulting in 31,680 features (referred to as case study MS); and (ii) the 0.01, 0.02, . . . , 0.99
quantiles over all ensemble members and grid points, resulting in 23,760 features (referred to as
case study QS).

Both the aggregated PV power and wind power measurements are available at 1 minute res-
olution, which are then averaged to 5 minute resolution. The total installed capacity is 18,164
kW and 48,550 kW for PV power and wind power, respectively. When the VPP consists of PV
alone, the measurements are detrended using clear-sky GHI generated by the McClear model
(Lefèvre et al., 2013) for a tilt of 25° and azimuth of 180° due south. These are the optimal tilt and
azimuth on Rhodes and the implicit assumption is therefore that most PV systems will have been
installed with this orientation (Kambezidis and Psiloglou, 2021). However, the PV power measure-
ments do not coincide perfectly during early morning and late afternoon, which is likely caused
by systems orientated towards the east and west, respectively. Therefore, the detrended PV
power measurements are therefore set to 0 when the zenith angle is larger than 90° or when the
clear-sky GHI is lower than 1 W/m2 as these values would otherwise be significantly higher than
can be reasonably assumed. Both PV power and wind power are normalized with the installed
capacity so that the errors can be presented as dimensionless numbers or as percentages.
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II.4.3 Case study III

The third and final case study concerns hierarchical point forecasting with missing values, as
detailed in Section I.3.5. Since the case study involves energy production, the forecasts should
be non-negative and therefore S := {y|Ay = 0,y ≥ 0}; Proposition 1 holds as S remains convex.
Only day-ahead forecasts are of interest with hourly resolution, i.e., the forecast horizon is 12-36
hours which simulates day-ahead market conditions. The data are the same as in case study
I, except that VPPs of wind power and PV power are investigated separately. In both cases, a
3-level hierarchy is considered. Wind production data are naturally aggregated at park level
(13 wind parks in total); for the PV production data we construct a fictitious hierarchy based on
spatial k-means clustering. Figure 4 provides an overview of the geographical distribution of the
power plants.

It is important to note that historical production lags are not considered as input features as
these typically do not improve forecasts in the horizon of interest. Further, including historical lags
would introduce missing values in x, which is outside of our scope. For the i-th series, respective
feature vector xit comprises the NWPs from the closest grid point in terms of Euclidean distance;
when forecasting a group of series in one-shot, respective features are concatenated in a single
vector.

II.4.4 Benchmarks

Benchmark forecast models are important tools to gauge the performance of the model under
investigation. Generally, benchmark models should either be naive to represent a lower bound
to the achievable performance or they should be well-known state-of-the-art models. In this
report, a multitude of benchmark models is used and the following gives a brief description for
each of these as a function of case study.

In case study I, AnEn without any feature selection (“Vanilla AnEn”) is used as a benchmark to
evaluate what the value of feature selection and forecast combination is. The performance
of Vanilla AnEn allows to compute a skill score (s = 1 − Scoremodel

Scorebenchmark
), which reflects the relative

improvement over the benchmark model where a negative skill implies worse performance than
the benchmark. Furthermore, Quantile Regression Forests (QRF) is used as a state-of-the-art
benchmark. QRF is an extension of random forests (RF), in which the prediction is the weighted
average of the observed response variables (Breiman, 2001). Instead in QRF, the output is the
weighted distribution of the response variables (Meinshausen, 2006). During training, each tree
is grown on a random sample of the training data, thus reducing the correlation between the
trees. To further decrease the correlation between the trees, a random subset of the features is
selected at each candidate split (Breiman, 2001). The QRF model is separately trained for each
forecast horizon and takes as input all available features.

In case study II, again QRF is used to forecast the marginal predictive distributions. The Gaussian
copula described in Section I.4.3 models the dependence structure between forecast horizons
and is used to generate trajectory forecasts in combination with the probabilistic forecasts gen-
erated by QRF. The naive benchmark is the multivariate probabilistic ensemble (MuPEn) of which
the marginal predictive CDFs are identical to those of the complete-history persistence ensem-
ble (van der Meer, 2021). It can be constructed by gathering all N K-length vectors from the
historical observations that start at the same time (“HH:MM”) as the current forecast issue time t.
The result is an N ×K matrix from which we randomly sample—without replacement—S trajec-
tories such that the result is a multivariate predictive distribution Ft ∈ RS×K .

Finally, in case study III, benchmarks comprise post-processing and end-to-end learning ap-
proaches. Note that for post-processing methods, any learning algorithm can be used to gen-
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Figure 6 Overview of Key Performance Indicators of the Smart4RES project.

erate base forecasts. To allow for a fair comparison, similar base learners are considered in all
cases, i.e., randomized tree ensembles based either on the Random Forest (Breiman, 2001) or
the ExtraTrees (Geurts et al., 2006) algorithm. The following approaches are examined:

• BASE: Base forecasts with a Random Forest model for each series, without reconciliation.
Typically, these will not be coherent.

• BASE-BU: Bottom-up reconciliation applied to the base forecasts of the bottom-level series.

• BASE-PRJ: Base forecasts post-processed with a Euclidean projection step. The reconciled
forecasts are given by

argmin
y∈S

∥y − ŷt+k∥2, (43)

where ŷt+k are the base forecasts at time t with horizon k. Alternative reconciliation meth-
ods, such as MinT (Wickramasuriya et al., 2019) and constrained multivariate least squares
(Di Modica et al., 2021), were also examined. However, as these methods require addi-
tional training, results with missing values were not robust and thus are omitted.

• EtE: A single Random Forest model predicting the whole hierarchy, to examine the efficacy
of end-to-end learning.

• EtE-PF: End-to-end learning with prescriptive forests to deal with missing values.

In all cases, except for EtE-PF, observations with missing values are disregarded prior to training.
For the EtE approach, this means that observation yt is disregarded if at least two of the n
series have a missing value, thus this approach deals with the largest loss of information. A grid
search is performed to tune the hyperparameters of the Random Forest models. For the EtE-PF,
we employ random node splits to speed-up computations, following the ExtraTrees algorithm
(Geurts et al., 2006), and similarly perform a grid search for tuning.
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Finally, Fig. 6 presents the Key Performance Indicator (KPIs) of the project. Relevant to this de-
liverable are KPIs 1.2a - d, where the percentage improvement is computed using one of the
benchmarks described above.
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III. Results

III.1 Case study I

This section presents the forecast results of the probabilistic forecasts of a VPP consisting of solely
PV systems and a VPP consisting of wind turbines and PV systems, as described in Section II.4.1.
The following subsections have been further divided to present the results of the forecast models
on the validation data and testing data.

III.1.1 VPP - PV
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Figure 7 Forecast results on the validation set from the VPP consisting solely of PV. In (a), the numerical scores
as a function of the forecast horizon. In (b), histograms of the PIT variables combined from all forecast
horizons, including the variance. In (c), the proportion of the weights assigned to the feature groups.

III.1.1.1 Validation This section presents the results on the validation data of the VPP consisting
solely of PV systems. The results of the validation set are relevant because the forecast combi-
nation weights are determined based on these results. Recall that data from 2019-01-01 until
2019-09-30 is used for the historical analogs while 2019-10-01 until 2019-12-31 is used for valida-
tion. Figure 7a presents the numerical scores of the probabilistic forecasts as a function of the
forecast horizon, which is 15 minutes up to 6 hours. The scores are computed on the normalized
data and therefore presented as such. It is clear that the forecasts resulting from the 6 filtering
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methods perform quite similarly in terms of CRPS, RMSE and sharpness, except that filter MIM
deteriorates after 2 hours compared to the other filters. This is likely caused by the fact that filter
MIM does not consider interactions between features and therefore potentially selects redun-
dant features. This can be seen in Fig. 7c, where the filter quickly selects only features from the
NWP forecasts after the 2 hour forecast horizon.

In contrast, the other filters select a more diverse feature set over the forecasts horizons. There
are some notable differences between the filters. For instance, filter CMI consistently selects CLS,
i.e., solar geometric data, as an important input feature, while MRMR puts minor weight on CLS
and the other filters ignore this information. In addition, DISR puts almost negligible weight on the
most recent power measurement (“VPP”) even though it is well known among forecasters that
this information is relevant. Similarly, filters MIM and CMIM assign little weight to the most recent
measurements.

Regardless, Fig. 7b shows that the probabilistic forecasts of all feature selection methods display
positive bias, as indicated by the decreasing PIT histograms. This can be expected since the
training and validation sets are disjoint, i.e., the seasons do not overlap. A full year of historical
data would afford a more similar historical data set and therefore improved results.
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Figure 8 The proportion of the weights assigned to the feature groups for the VPP consisting only of PV
systems for the testing case.

Table 1 The combination weights and SLP and BLP parameters for the VPP consisting solely of PV, expressed
as “mean ± standard deviation” over all forecast horizons. The weights are optimized based on validation
data and tested on the test data.

Model CMI CMIM DISR MIM MRMR NJMIM c α β

TLP 0.249 ± 0.048 0.219 ± 0.086 0.081 ± 0.043 0.078 ± 0.08 0.254 ± 0.07 0.118 ± 0.039 (-) (-) (-)

SLP 0.277 ± 0.065 0.206 ± 0.099 0.087 ± 0.065 0.068 ± 0.078 0.253 ± 0.057 0.109 ± 0.046 0.931 ± 0.028 (-) (-)

BLP 0.211 ± 0.021 0.206 ± 0.062 0.119 ± 0.049 0.166 ± 0.053 0.192 ± 0.058 0.106 ± 0.039 (-) 0.928 ± 0.048 1.506 ± 0.069

III.1.1.2 Testing Here the results on the testing data are presented. Recall that the testing data
period runs from 2020-01-01 until 2020-09-30 while all data prior to this are used for model training
or as analogs. Figure 8 presents the weights that the filters assign to the feature groups. The
feature selection is very similar to that of the feature selection on the validation data and will
therefore not be discussed further.

Figure 9 presents the numerical scores as a function of the forecast horizon including the com-
bination methods and QRF, as well as the CRPS skill relative the Vanilla AnEn. In terms of the
point forecasts, it is interesting to note that the RMSE is on average lower than during the vali-
dation period (cf. Fig. 7a). This could be due to the validation period being more challenging
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Figure 9 The numerical scores as a function of the forecast horizon for the VPP consisting only of PV systems.
The scores have been computed on data normalized using the installed capacity.
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Figure 10 Histograms of the PIT variables combined from all forecast horizons, including their variance, for
the VPP consisting only of PV systems.

in terms of weather patterns or that the validation period is substantially shorter than the testing
period. Comparing the models during the testing data, it can be observed that the combina-
tion methods, except for BLP, outperform the component models and that QRF outperforms the
combination methods in terms of RMSE and CRPS. In terms of skill, all models achieve positive
skill and it can therefore be concluded that filtering methods do not deteriorate the predictive
performance while significantly improving the computation time (≈ 90%). It is worth noting that
the KPI of Fig. 6 is achieved. Most notable from Fig. 9 is the poor performance of BLP, which the-
oretically should perform best. The poor performance of BLP is most likely caused by the biased
component forecasts on the validation data (cf. Fig. 7b), which affects BLP more than the other
combination methods. It is not certain what causes the bias increase although a likely expla-
nation is that the parameters have been optimized to compensate for the negative bias on the
training data, thus resulting in positive bias when combining the unbiased component forecasts
on the testing data. The poor performance of BLP can also be observed from Table 1 where the
large values of the α and β parameters of the Beta distribution attempt to correct the biases,
which results in overcorrection. Regarding the weights that the combination methods assign to
the component models, it is interesting to note that these are quite similar among the combi-
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Figure 11 Distribution of the CRPS conditioned on the binned deterministic forecast error of the Vanilla AnEn
for 3 forecast horizons and for the VPP consisting only of PV systems. The points represent the average CRPS
of each component model.

nation methods. A notable difference is the weight assigned to MIM by BLP (0.166 on average)
compared to 0.078 by TLP and 0.068 by SLP given that MIM performed worse on the validation
data in terms of CRPS. This result highlights the need for a longer validation period.

Figure 10 shows that the component models (top row) show much better calibration in the main
distribution than for the validation data. Nevertheless, the tails of the distribution are miscali-
brated as indicated by the large peaks on either side. As a naive combination method, OLP
performs well because the component models are too confident on average. However, both
OLP and TLP are slightly overdispersed as also indicated by the variance of the PIT variables.7 This
is a theoretical result, which SLP and BLP mitigate by allowing for nonlinear forecast combination
(Gneiting and Ranjan, 2013). The probabilistic forecasts combined with SLP are closest to neutral
dispersion, whereas BLP introduces negative bias as discussed before. Finally, QRF forecasts are
overdispersed whereas Vanilla AnEn forecasts are underdispersed more than the component
models.

Finally, Fig. 11 presents a conditional error analysis of the 4 combination methods, QRF and the
Vanilla AnEn. The vertical axis comprises 5 bins into which the square root of the squared er-
ror of the Vanilla AnEn has been categorized. The horizontal axis presents the continuous and
contemporary CRPS. The points in the figure show the average CRPS of the component models
for each bin and the coloured distributions present the CRPS distribution in each bin of the 3
models whose name is specified in the legend with the average of the distribution shown by
the vertical line. Furthermore, the 3 subfigures show the results for 3 forecast horizons, specifi-
cally 15 min, 3 h and 6 h ahead. Several interesting observations can be made from the figure.
First, all the models incur approximately similar CRPS in the lowest bin of the Vanilla AnEn deter-
ministic error although the distribution of the Vanilla AnEn at the 15 min horizon is slightly wider.
Second, the CRPS of Vanilla AnEn increases most with increasing point forecast error during the
first forecast horizon, which indicates that the Vanilla AnEn has to consider too much unneces-
sary information—recall that NWP forecasts make up approximately 60% of the total number of

7Recall that the variance of the PIT variables computed from neutrally dispersed probabilistic forecasts should be
close to 0.083.
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features—and this impedes the search for suitable analogs. The latter argument is supported
by the CRPS distributions that increasingly converge with increasing forecast horizon, i.e., when
NWP forecasts become increasingly important relative to the latest satellite image. Third, when
comparing QRF and SLP directly, it is clear that the former performs better on the 15 min horizon
in all the bins except for the lowest. However, at the 3 h forecast horizon in the highest deter-
ministic forecast error bin it can be seen that SLP achieves lower absolute CRPS as well as on
average. Similarly, the average CRPS achieved by SLP is slightly lower than that of QRF at the
6 h forecast horizon and at the highest deterministic forecast error bin although the difference
is less pronounced. Finally, it is interesting to note that the component forecast models always
outperform Vanilla AnEn at the first forecast horizon and with increasing deterministic forecast
error, again highlighting that the computational burden can be significantly improved while also
improving the accuracy.

III.1.2 VPP - Wind and PV
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Figure 12 Forecast results on the validation set from the VPP consisting of wind and PV. In (a), the numerical
scores as a function of the forecast horizon. In (b), histograms of the PIT variables combined from all forecast
horizons, including the variance. In (c), the proportion of the weights assigned to the feature groups.

III.1.2.1 Validation Similar to the previous section, here the forecasts on the validation data are
first analyzed. Recall that the VPP comprises 120 MW of installed wind power and approximately
4 MW of PV power. Fig. 12a presents the numerical scores on the validation data, which are
slightly worse than the results of the VPP consisting solely of PV power (cf. Fig. 7a). Especially
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filter MIM performs poorly; it diverges substantially in terms of CRPS, RMSE and sharpness from
the other filters despite that the filter assigns more weight to the recent measurements than
previously (cf. Fig. 12c). Noteworthy is the lack of sharpness compared to the VPP consisting of
only PV, which is caused by the higher availability and variability of wind during the validation
period (2019-10-01 until 2019-12-31).

In this case study where the share of wind power is significant, feature selection as a means to
diversify the feature set becomes less pertinent. In essence, satellite imagery and solar geometry
are mainly useful for PV power generation. This is reflected in Fig. 12c, where the filters mainly
select features related to recent measurements of NWP forecasts. However, filter CMI still selects
a diverse feature set and it can therefore be concluded that this filter selects the most diverse
features, even when that is not necessary.

Interestingly, the probabilistic forecasts are calibrated in the main part of the distribution, as
Fig. 12b shows. However, in all cases there are significant spikes at either sides of the distribution,
which indicates that the models frequently either completely over- or underestimate the power
generation. This indicates that the time series is variable and that the models do not fully capture
the variability. This can be expected since the hourly NWP forecasts are linearly interpolated to
the temporal resolution of the power measurements, which is 15 minutes. As a consequence,
the NWP forecasts are smoothed and even though (35) includes time steps before and after
the query time to capture variability, the forecasts are overconfident because some of the in-
formation concerning the variability is lost and the power measurements subsequently lack the
appropriate variability.
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Figure 13 The proportion of the weights assigned to the feature groups for the VPP consisting of PV systems
and wind turbines for the testing case.

Table 2 The combination weights and SLP and BLP parameters for the VPP consisting of wind and PV, ex-
pressed as “mean ± standard deviation” over all forecast horizons. The weights are optimized based on
validation data and tested on the test data.

Model CMI CMIM DISR MIM MRMR NJMIM c α β

TLP 0.11 ± 0.032 0.159 ± 0.061 0.242 ± 0.102 0.068 ± 0.024 0.268 ± 0.151 0.153 ± 0.029 (-) (-) (-)

SLP 0.146 ± 0.067 0.187 ± 0.081 0.19 ± 0.084 0.1 ± 0.052 0.239 ± 0.138 0.138 ± 0.058 0.882 ± 0.054 (-) (-)

BLP 0.115 ± 0.039 0.16 ± 0.059 0.244 ± 0.098 0.07 ± 0.025 0.258 ± 0.131 0.152 ± 0.026 (-) 1.039 ± 0.058 1.029 ± 0.065

III.1.2.2 Testing Figure 13 presents the weights that the different filters assign to each feature
group as a function of the forecast horizon. Similar to the case for the VPP consisting only of PV
systems, the feature weights are very similar when comparing the validation (cf. Fig. 12c) and
testing data. This indicates that the filters are consistent, as are the data.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

40



D3.2 Towards a generic seamless forecasting approach

Sharpness

Skill

CRPS

RMSE

0 2 4 6

0.04

0.08

0.12

0.16

0.03

0.05

0.07

0.00
0.25
0.50
0.75

0.395
0.400
0.405
0.410
0.415

Forecast horizon (hours)

S
co

re
 (

−
)

Model

CMI
CMIM
DISR
MIM
MRMR
NJMIM
OLP
TLP
SLP
BLP
QRF

Figure 14 The numerical scores as a function of the forecast horizon for the VPP consisting of PV systems
and wind turbines. The scores have been computed on data normalized using the installed capacity.
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Figure 15 Histograms of the PIT variables combined from all forecast horizons, including their variance, for
the VPP consisting of PV systems and wind turbines.

In terms of the numerical scores, Fig. 14 shows that these are generally lower on the testing data
compared to the validation data. Again, the most likely explanation for this is the fact that the
validation data run from 2019-10-01 until 2019-12-31, which is a challenging period to forecast.
When comparing among the models, Fig. 14 indicates that the combination methods and QRF
perform similarly during the first 2 forecast horizons. This is interesting because it departs from the
results for the PV power forecasts and shows that static forecast combination can be competi-
tive, while naive forecast combination should always be considered as a benchmark. In terms
of skill, the difference is substantial compared to only forecasting PV power, which indicates that
the inclusion of satellite data significantly deteriorates the performance of Vanilla AnEn. This is a
logical consequence because satellite-derived irradiance maps are not useful when forecast-
ing wind power while the additional features do increase the sparsity of the search space, in
turn decreasing the quality of the analogs. The fact that 5 out of 6 filter methods result in positive
skill confirms this observation. QRF produces the least sharp predictive distributions combined
with MIM.

The latter observation becomes relevant when looking at the PIT histograms presented in Fig. 15.
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Figure 16 Distribution of the CRPS conditioned on the binned deterministic forecast error of the Vanilla AnEn
for 3 forecast horizons and for the VPP consisting of PV systems and wind turbines. The points represent the
average CRPS of each component model.

SLP and BLP forecasts appear better calibrated than those produced by QRF and the latter
produces less sharp forecasts, which raises the question why the CRPS of QRF is lower than the
CRPS of SLP and BLP. Upon closer inspection of the PIT histograms and computing the MBE (not
shown here), it can be seen that SLP and BLP suffer from slight negative bias as indicated by
the moderate positive slope of the PIT histograms. Interestingly, QRF shows better forecast res-
olution (not shown here), which relates to the CRPS as CRPS=Reliability+Uncertainty-Resolution
and these values are averaged over the testing set (Hersbach, 2000). The uncertainty is inherent
to the data set and cannot be improved upon; therefore, the forecaster aims to minimize the
reliability and maximize the resolution in the aforementioned equation. The resolution is defined
as a forecast model’s capability to issue forecasts that depend on the prevalent conditions;
as such, a climatological model by design has zero resolution because it always generates the
same forecast (Lauret et al., 2019). This raises an important question of whether (probabilistic)
forecast combination decreases the forecast resolution, which we intend to investigate in future
work.

Figure 16 presents the binned square root of the squared error of the Vanilla AnEn model versus
the CRPS. When comparing this with the same figure of the VPP consisting only of PV systems
(cf. Fig 11), it is interesting to note that CRPS is generally lower when combining wind and PV
in a VPP when considering the highest error bin on the vertical axis. This indicates that at high
production levels, the forecast error for PV power can be significant, e.g., when broken clouds
occur. Overall, however, the PV power forecast error is lower because of the lower capacity
factor compared to wind power. Furthermore, Fig. 16 shows that QRF and SLP perform similarly
across all point forecast error regimes for the first horizon whereas their performance diverges
at the highest point forecast error regimens when the forecast horizon increases. This is a clear
consequence of the lower forecast resolution of SLP; when the weather is most variable, a model
with high resolution will likely be more accurate.
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III.2 Case study II
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Figure 17 Histograms of the marginal PIT variables combined over all forecast horizons and testing instances
where the zenith angle is smaller than 85°.
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Figure 18 CRPS in percent of nominal capacity as a function of forecast horizon. The mean and standard
deviation are computed across the 12 testing months.

This section presents the forecast results of the multivariate probabilistic forecasts of a VPP con-
sisting of solely PV systems, as described in Section II.4.2. Unlike case study I, this case study
does not require a validation set because the proposed model does not require training or tun-
ing. Note that the QRF benchmark does require a validation set to estimate the covariance as
described in (18) - (19), but we omit the analysis here.

Although the focus of this case study is on multivariate probabilistic forecasting, it is still important
to evaluate the marginal predictive distributions. The main reasons are that the energy score
and variogram score, or any numerical score for that matter, summarize all the information in
a single value, whereas multivariate rank histograms can be challenging to interpret (Thorarins-
dottir et al., 2016). Therefore, this section starts with an evaluation of the marginal predictive
distributions, i.e., the probabilistic forecasts.

Figure 17 presents histograms of the PIT variables computed over the testing set. The figure
shows that the PMM+MS and QRF+QS forecasts tend to be underdispersed in the main part of
the distribution. In contrast, Fig. 17 shows that forecasts generated by PMM+QS and QRF+MS
are calibrated better in the main part of the distribution. However, the lowest quantile deviates
in case of PMM+QS, whereas the most extreme quantiles deviate in case of QRF+MS, which
indicates consistent over- and underestimation similar to what was observed in Section III.1. In
the case where the trajectory forecasts are generated in one-shot as with PMM, postprocessing
the marginal distributions to enhance the calibration would alter the multivariate distribution and
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Figure 19 ES and VS averaged over the entire testing set and on a monthly basis. Note that the scores are
dimensionless.

undermine the temporal dependence structure. Postprocessing multivariate forecasts is out of
the scope of this report but the interested reader is referred to Schefzik and Möller (2018).

Furthermore, Fig. 18 presents the CRPS in percent of the nominal capacity as a function of the
forecast horizon. The mean and standard deviations are computed across the 12 testing months
and presented as solid and dashed lines, respectively. The figure shows that PMM+MS performs
poorly, which is caused by forecasts in the test month December. The poor performance is likely
caused by the combination of a lack of suitable ensemble members and the way the NWP
ensemble information is summarized, since PMM+QS does not suffer from exceptionally poor
performance in December.

Another important observation relates to the relative constancy of PMM+QS in terms of CRPS
over the forecast horizons compared to that of QRF+MS and QRF+QS. In the latter cases, CRPS
sharply increases during the first hours and then stabilizes. Stability in the forecast error variance
over the entire forecast horizon is preferable because it reduces the bullwhip effect (Yang et al.,
2019). An example of the bullwhip effect given underdispersive forecasts is that a control algo-
rithm could plan an optimistic strategy that frequently requires the available storage to correct
for the forecast errors. Nevertheless, QRF+MS outperforms the other models in terms of CRPS.

Next, we turn our attention to the multivariate forecasts. Figure 19 presents ES and VS as monthly
averages in addition to the total averaged scores. The figure clearly shows that PMM+MS per-
forms poorly in December. Besides December, the figure shows that QRF+MS performs substan-
tially better in February than the other models. Overall, QRF+MS outperforms the others but
given the limited number of forecast-verification pairs—recall that there are about 700 forecast-
verification pairs per month—it is worthwhile to test the significance of the difference between
the forecasts.

In hypothesis testing it is common to set the null hypothesis (H0) such that there is no differ-
ence between the forecasts whereas the alternative hypothesis (Ha) is that there is a difference.
The Diebold-Mariano (DM) test is commonly used to test H0. The test requires computation of
the forecast error loss differential dt = ℓ(F1,t,yt) − ℓ(F2,t,yt). However, the DM test is designed
specifically for a forecast horizon and consequently, we are uncertain whether it applies here.
Furthermore, the paired t-test is not recommended when temporal dependence and contem-
poraneous correlation are present (Gilleland et al., 2018). Instead, Gilleland et al. (2018) recom-
mend the Hering-Genton (HG) test and circular block bootstrapping. We choose to use block
bootstrapping because the HG test, like the DM test, assumes that the series d is covariance
stationary, whereas circular block bootstrapping is relevant for small testing sets (Gilleland et al.,
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2018). The bootstrap is repeated 10,000 times with a block length of
√
T and the results are pre-

sented in Table 3 as the mean plus-minus the standard deviation and the confidence interval
(CI, significance level α = 5%) in parentheses. As the table shows, 0 always lies within the CI and
therefore we cannot reject H0.

Table 3 Block bootstrapped loss differential presented as µ± σ (2.5%− 97.5%).

ES

PMM+QS QRF+QS PMM+MS QRF+MS

PMM+QS 0±0 (0—0) 0.06±0.31 (-0.5—0.83) -0.08±0.21 (-0.67—0.31) 0.13±0.32 (-0.4—0.82)

QRF+QS (-) 0±0 (0—0) -0.11±0.29 (-0.78—0.46) 0.11±0.22 (-0.2—0.68)

PMM+MS (-) (-) 0±0 (0—0) 0.15±0.27 (-0.31—0.74)

QRF+MS (-) (-) (-) 0±0 (0—0)

VS

PMM+QS QRF+QS PMM+MS QRF+MS

PMM+QS 0±0 (0—0) 397.02±1116.4 (-1557.52—3187.29) -246.11±794.92 (-1996.46—1632.91) 722.43±1199.35 (-977.84—3611.67)

QRF+QS (-) 0±0 (0—0) -533.09±1108.93 (-3073.65—1598.25) 534.45±1119.49 (-657.42—4011.29)

PMM+MS (-) (-) 0±0 (0—0) 776.92±1091.41 (-770.52—3274.18)

QRF+MS (-) (-) (-) 0±0 (0—0)

Finally, we report the skill scores relative to MuPEn in Table 4, computed as 1−Lmodel/LMuPEn and
where L is the loss averaged over the testing set. Evidently, QRF+MS performs best on all scores.
However, given that the marginal predictive CDFs of PMM+QS are calibrated slightly better, that
no learning step but only proper data organization is required, and that computation time is
reduced by approximately 98%, we argue that the PMM is at the very least a highly efficient and
interpretable asset in a forecaster’s toolbox.

Table 4 CRPS, ES and VS skill scores, relative to MuPEn. Note that we compute the mean and standard
deviation (µ± σ) over all forecast horizons for CRPS.

Model CRPS ES VS

PMM+MS 0.188 ± 0.250 0.237 0.384

PMM+QS 0.241 ± 0.234 0.272 0.398

QRF+QS 0.289 ± 0.221 0.308 0.452

QRF+MS 0.348 ± 0.203 0.361 0.536
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III.3 Case study III
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Figure 20 Aggregated SRMSE for the hierarchy as a function of the number of sampled nodes and the
percentage of missing values per node over 5 iterations. Bars correspond to one standard deviation.
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Figure 21 Performance of EtE-PF for missing values at different timestamps. The lines indicate the number
of malfunctioning nodes, the shaded areas show one standard deviation.

The effect of missing values due to equipment malfunctions is simulated by sampling a subset of
bottom-level nodes and setting a percentage of training observations to zero. Both the number
of nodes and the percentage of missing values per node are varied and this experiment is
repeated 5 times to derive aggregate statistics. For simplicity, we assume that missing values
occur at the same timestamp for all nodes.

Figure 20 shows the aggregated SRMSE as a function of the number of sampled nodes and the
percentage of missing values per node. Overall, the following can be observed: (i) end-to-end
learning (EtE) outperforms post-processing methods but is also more heavily affected by miss-
ing values; (ii) post-processing methods are robust against missing values; and (iii) the proposed
EtE-PF combines the best of both worlds. Regarding the wind data set (Fig. 20a), both EtE
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Table 5 Average SRMSE (± one standard deviation) per hierarchy level. The best-performing model is un-
derlined in bold font. Bold font indicates that a result does not differ from the best-performing model at the
1% level (Welch’s t-test).

Data set Level (# nodes) BASE BASE-BU BASE-PRJ EtE EtE-PF

1 0.0969 ± 0.0002 0.0977 ± 0.0001 0.0968 ± 0.0002 0.0972 ± 0.0005 0.0971 ± 0.0003

Wind 2 (13) 0.1327 ± 0.0132 0.1322 ± 0.0132 0.1326 ± 0.0123 0.1306 ± 0.0128 0.1305 ± 0.0127

3 (60) 0.1453 ± 0.0144 0.1453 ± 0.0144 0.1452 ± 0.0138 0.1429 ± 0.0141 0.1428 ± 0.0141

1 0.0761 ± 0.0001 0.0762 ± 0.0001 0.0759 ± 0.0001 0.0765 ± 0.0005 0.0764 ± 0.0002

PV 2 (3) 0.0812 ± 0.0040 0.0811 ± 0.0041 0.0811 ± 0.0037 0.0808 ± 0.0035 0.0807 ± 0.0035

3 (20) 0.1008 ± 0.0176 0.1008 ± 0.0176 0.1009 ± 0.0170 0.0980 ± 0.0153 0.0980 ± 0.0153

and EtE-PF show improved accuracy for lower percentage of missing values, with the perfor-
mance of EtE gradually degrading as the percentage of missing values increases. Conversely,
the EtE-PF proves to be robust, consistently outperforming the reconciliation methods. This result
persists both for the case of an increased number of malfunctioning nodes and an increased
percentage of missing values per node. Further, BASE-PRJ performs, albeit slightly, better than
the BASE and BASE-BU, corroborating previous findings on the benefits of post-processing. Similar
results are observed for the PV data set (Fig. 20b), which has a smaller sample size. Overall, the
relative increase in average SRMSE for EtE from the smallest (5%) to the largest (50%) percentage
of missing observations is 0.8% for the wind data set and 0.6% for the PV data set.

By examining the accuracy of end-to-end learning as a function of the number of selected
nodes and the percentage of missing observations we observe that the former has a negligible
effect in overall performance; this is partly attributed to the design of the experiment, as miss-
ing values occur at the same timestamp across all nodes. On the contrary, the percentage of
missing values has a more pronounced effect. In order to present a comprehensive study, we
repeat the above experiment only for EtE-PF with missing values occurring at different times-
tamps. The results presented in Fig. 21 are similar to the ones achieved before, with the forecast
accuracy decreasing only slightly as the number of nodes increases. Thus, we conclude that the
proposed EtE-PF successfully mitigates the adverse effects of missing values in the lower levels
of the hierarchy.

Lastly, we examine performance for each level of the hierarchy. From Table 5 we observe that
in all cases the SRMSE is lower for higher levels of aggregation due to the spatial smoothing ef-
fect. The effect is more pronounced for the wind production data, which we partly attribute to
the larger number of wind production series examined. For both data sets, the EtE-PF leads to
the best performance in the 2nd and 3rd (bottom) level, while BASE-PRJ leads to the best per-
formance for the 1st (top) level, with the results being, generally, statistically significant. Overall,
both EtE and EtE-PF consistently improve performance for the bottom-level nodes, highlight-
ing the benefits of exploiting dependencies across time series in an end-to-end learning setting.
Note that the results shown in Table 5 are obtained over all the iterations (for uniform timestamps);
the difference between EtE-PF and EtE becomes statistically significant if we only examine ad-
verse scenarios (higher percentage of missing values), as the performance of EtE declines.
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IV. Conclusions

This section summarizes the main contributions and findings from Task 3.2. The topics for future
work are also identified.

IV.1 Summary

Accurate RES forecasts play an important role in the energy transition as they support decision-
making that ensures the power system is operated efficiently and safely. However, variability and
intermittency of the solar and wind resources make RES forecasting a challenging task. As the
penetration of RESs in the power system increases, the requirements on the forecasts become
more stringent as well (e.g., probabilistic, multivariate, high temporal/spatial resolution, etc.).
Table 6 presents the KPIs that were achieved in the various case studies.

Task 3.2 provides the following contributions to the field of RES forecasting:

1. Automatic feature selection. As the amount of explanatory data increases, so does the
need to ensure that redundant features are excluded. Of the feature selection methods,
filters have high potential because they are model agnostic. When based on mutual infor-
mation, these filters can additionally uncover nonlinear relationships between features. In
addition, the scores assigned by the filters to the features can be used in an automated
framework of feature weighting.

The proposed method was tested on a real-world data set comprising PV systems and
wind turbines that were aggregated as VPPs. In case of the VPP consisting solely of PV
systems, the results showed that each filter method selected a feature subset that allowed
the forecast model to improve upon the benchmark based on the same forecast model
that considered all available features. Moreover, the computational speed improved by
approximately 90%, which becomes increasingly important when the temporal resolution
increases. In case of the VPP consisting of PV systems and wind turbines, feature selection
was highly relevant because a large part of the features, i.e., the satellite-derived irradi-
ance map, was nearly irrelevant due to the dominating share of wind power in the VPP.

2. Probabilistic forecast combination. In forecasting, and prediction in general, there are
several sources of uncertainty related to, e.g., model selection, model parameters or fea-
ture selection. In the frame of automatic feature selection, such uncertainty is especially
present because it is a priori uncertain whether the feature selection method captures
the necessary information. Forecast combination is an effective method to hedge against
uncertainties because the component models offer different perspectives.

Linear and nonlinear combination methods for probabilistic forecasts were tested on the
same VPPs as described above. When the VPP consisted solely of PV systems, the combina-
tion methods substantially improved upon the component models. Moreover, whereas the
advanced benchmark (QRF) did not generate calibrated forecasts, combination method
SLP did. Interestingly, even the naive combination method (OLP) performed quite well,
which is often referred to as the “forecast combination puzzle” (Claeskens et al., 2016).
On the other hand, BLP, as the theoretically most flexible combination method, performed
poorly, which was most likely caused by the biased forecasts it was trained on. When tested
on the VPP consisting of PV systems and wind turbines, BLP performed well and the fore-
casts it was trained on were unbiased.

3. Seamless multivariate probabilistic forecasts at high temporal resolution. For power systems
that already feature high RES penetration levels, such as island grids, high-temporal reso-
lution forecasts become increasingly important. Moreover, such forecasts should represent

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 864337

48



D3.2 Towards a generic seamless forecasting approach

Table 6 Refer to Fig. 6 for the KPIs of the project.

KPI index KPI name KPI baseline KPI target KPI achieved

1.2a % improvement RES forecasting score up to 30 min ahead Vanilla AnEn Solar: 3-5% CRPS. Wind: 2-4% CRPS Solar: 38% CRPS. Wind: 62% CRPS.

1.2b % improvement RES forecasting score up to 96 h ahead Vanilla AnEn Solar: 4-6% CRPS. Wind: 3-5% CRPS Solar: 13% CRPS. Wind: 35% CRPS.

1.2c % improvement variogram score for ensemble forecasts QRF ≥ 0 Statistically insignificant difference

1.2d % improvement for seamless generic forecasts QRF Weighted combination of 1.2a and 1.2b 37%

the correct autocorrelation in order to efficiently schedule thermal generators and control
storage devices. However, the increasing temporal resolution brings a set of challenges,
particularly related to the computational burden. Pattern matching and efficient similar-
ity search algorithms can alleviate the aforementioned challenges, resulting in a forecast
model that does not require training.

The results of the case study on the Greek island of Rhodes showed that the proposed
model can significantly improve the computation time; specifically, with approximately
98%. Although the benchmark model (QRF) outperformed the proposed model in terms
of the marginal predictive distributions, there was no statistical significant difference be-
tween the two models in terms of the multivariate forecasts. A longer data set at more
geographical areas would allow for a definitive conclusion, as well as a value-oriented
assessment of the forecasts in a decision-making framework.

4. Hierarchical forecasts with missing values. Hierarchical forecasts should be coherent to
ensure consistent decision making throughout the power system. Usually, coherency is en-
sured by means of a post-processing step. However, there is a large class of non-parametric
machine learning models that generates coherent hierarchical forecasts. The main prac-
tical implication is that off-the-shelf machine learning tools can be utilized for hierarchical
forecasting, presenting an easy way to create benchmarks. In addition, missing values in
the lower part of the hierarchy, e.g., smart-meters, are common and efficient methods are
required to handle these instances.

We proposed a prescriptive trees algorithm for end-to-end learning with missing values.
Performance was evaluated in two case studies of wind and PV production point forecast-
ing on a day-ahead horizon. Overall, end-to-end learning showed improved aggregate
performance against two-step reconciliation approaches; for the bottom-level series this
improvement was 1.7% and 2.8% for the wind and PV data, respectively. Conversely, rec-
onciliation approaches proved to be more robust against the number of missing values. The
proposed solution managed to combine the best of both worlds as it maintained improved
performance while also mitigating the adverse effect of missing data for end-to-end learn-
ing.

IV.2 Dissemination

Each case study has one companion publication published in a peer-reviewed conference.

Automatic Feature Selection and Forecast Combination

Section II.2. D. van der Meer, S. Camal, G. Kariniotakis, “Generalizing Renewable Energy Fore-
casting Using Automatic Feature Selection and Combination,” 17th International Conference on
Probabilistic Methods Applied to Power Systems, 2022, doi:10.5281/zenodo.6451891.

Seamless trajectory forecasts

Section II.3.2. D. van der Meer, S. Camal, G. Kariniotakis, “Seamless intra-day and day-ahead
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multivariate probabilistic forecasts at high temporal resolution,” 17th International Conference
on Probabilistic Methods Applied to Power Systems, 2022, doi:10.5281/zenodo.6451913.

Hierarchical forecasts with missing values

Section II.3.3. A. Stratigakos, D. van der Meer, S. Camal, G. Kariniotakis, “End-to-end Learning for
Hierarchical Forecasting of Renewable Energy Production with Missing Values,” 17th International
Conference on Probabilistic Methods Applied to Power Systems, 2022, url: https://hal.archives-
ouvertes.fr/hal-03527644.

IV.3 Future Work

The following topics were identified for future work:

1. Automatic Feature Selection and Forecast Combination. The increasing spatial footprint of
VPPs remains a challenge to forecast models, while forecast combination suffers from static
parameter optimization. Future research should consider:

(a) testing other nonlinear filter methods based on, e.g., Kendall’s rank correlation coeffi-
cient;

(b) lowering the correlation between the component models so as to improve the effect
of combination;

(c) converting the static combination parameter learning to an online setting (e.g., Thorey
et al. (2018)).

2. Seamless trajectory forecasts. A challenge for search-based algorithms is the curse of di-
mensionality, which was addressed in the previous paper. Future research should consider:

(a) applying feature selection to trajectory forecasts, which will be challenging consider-
ing the importance of the temporal and spatial correlation;

(b) additional testing on multiple resources and, crucially, longer time periods to relieve
the curse of dimensionality;

(c) developing so-called consistency bands for multivariate rank histograms (not shown
in this deliverable) to account for a test set of limited size in combination with high-
dimensional forecasts.

3. Hierarchical forecasts with missing values. Missing data is common in the measurements
but also occurs in input features and increases the uncertainty of the forecasts. Future
research should consider:

(a) probabilistic forecasting with missing values;

(b) examining the impact of network losses on forecast coherency;

(c) examining the effect of corrupted or missing values in the feature vector.
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Appendices

A. Sample Average Approximation

This section describes analytical solutions for the SAA sub-problems in (37). For t ∈ [T ], the re-
spective SAA is given by

min
z

1

2

∑
t∈[T ]

∥yt − (1− γt)⊙ z∥22 | Az = 0

 . (44)

For simplicity, the objective is scaled. The KKT optimality conditions for this problem can be written
as ∑

t∈[T ]

(yt − (1− γt)⊙ z) +A⊺v = 0,Az = 0, (45)

where v ∈ Rna denotes the dual variables. We write (45) asP −A⊺

A 0


z
v

 =

∑t∈[T ] yt

0

 , (46)

where P = diag
(∑

t∈[T ](1− γ1t), . . . ,
∑

t∈[T ](1− γnt)
)

is an n-size diagonal matrix whose entries
equal the number of non-missing values per series. Hence, we need to solve this set of n + na

linear equations in the n+ na variables. Lastly, note that it is possible for P to become singular; in
this case, the least-squares solution of (46) can be used.
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