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Executive summary 

This report describes the work developed by DLR, DTU, EMSYS and ICCS in the framework of 

Task 3.1 (“Multi-source data approaches to short term RES forecasting”) of the Smart4RES 

project. 

The goal of this task was to develop a toolbox of data-science based methods that combine 

data collected from multiple sources with RES forecasting models and to demonstrate an 

improvement of RES power forecasting skill in line with the KPIs of the project. 

The following approaches or “tools” have been developed independently by the involved 

partners as indicated and successfully validated: 

• PV power forecasting using the combined Satellite and AllSkyImager Irradiance 

Forecast (DLR) → up to 18% RMSE improvement compared to only AllskyImager forecast 

• Using Skyimager data to improve the minute ahead PV power forecasting (EMSYS) → 

up to 23% RMSE improvement compared to operational EMSYS forecast 

• Improving the minute to hour ahead PV forecast during thunderstorms by using lightning 

data and power measurements (EMSYS) → up to 14% RMSE improvement compared to 

operational EMSYS forecast 

• Obtaining improved power curves through advanced outlier data filtering and 

machine learning techniques (EMSYS) → up to 8% RMSE improvement compared to 

operational EMSYS forecast 

• LiDAR based second-ahead forecasting of wind power and structural loads (DTU) → up 

to 35% RMSE improvement compared to persistence forecast 

• Investigating the capabilities of AI-based dynamic forecasting approaches and 

additional SCADA data channels (DTU) → up to 46% RMSE improvement of dynamic 

GRU networks compared to single GRU networks and persistence 

• Blending satellite irradiance maps with NWP data and power time series to improve 

hour-ahead PV forecasting (ICCS) → up to 5% MAE improvement compared to forecast 

without satellite irradiance 

• Applying AI techniques and combining two NWPs to improve the day-ahead solar 

power forecasting (ICCS) → up to 17% MAE improvement compared to single NWP 

forecast 

Most of these approaches integrate new sources of data, that have not been used in the 

context of RES forecasting before, into existing RES forecasting models. It could be 

demonstrated that all of these approaches yield a significant improvement of RES power 

forecasting skill in alignment with the Forecasting KPIs of the project, mostly reaching or 

exceeding the project KPI target values of 9-12% (solar) and 7-9% (wind) RMSE improvement 

for the up to 30-min ahead forecast.  
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1 Introduction 

As stated in the project proposal, the overarching goal of Smart4RES is to aim at developing 

and validating the next generation tools that jointly enable 1) an increase of at least 15% in RES 

forecasting performance and 2) enhanced value in applications thanks to a holistic approach 

that considers the whole model and value chain of RES electricity production forecasting. 

This deliverable presents the outcome of Smart4RES Task 3.1 (“Multi-source data approaches 

to short term RES forecasting”) in which a toolbox of different data-science based approaches 

had to be developed combining data collected from different sources and in different 

temporal domains, aiming at improving RES power forecasting skill. Several partners (DLR, DTU, 

EMSYS and ICCS) contributed to the work with independently developed methods (also 

referred to as “tools”). 

Besides the main goal of improving RES power forecasting skill, one objective was to develop 

complementary approaches to blending information from multiple sources of information. 

Various types of data from different sources have been used in combination with existing RES 

forecasting models: satellite images, solar irradiance measurements from satellites, Skycam 

images, LiDAR remote sensing data, lightning data, SCADA and power data from wind farms 

and data from numerical weather prediction models. 

The following multi-source data approaches have been successfully explored and validated 

and will be described in detail in the following sections: 

• PV power forecasting using the combined Satellite and AllSkyImager Irradiance 

Forecast (DLR, section 2) 

• Using Skyimager data to improve the minute ahead PV power forecasting (EMSYS, 

section 3) 

• Improving the minute to hour ahead PV forecast during thunderstorms by using lightning 

data and power measurements (EMSYS, section 4) 

• Obtaining improved power curves through advanced outlier data filtering and 

machine learning techniques (EMSYS, section 0) 

• LiDAR based second-ahead forecasting of wind power and structural loads (DTU, 

section 6) 

• Investigating the capabilities of AI-based dynamic forecasting approaches and 

additional SCADA data channels (DTU, section 7) 

• Blending satellite irradiance maps with NWP data and power time series to improve 

hour-ahead PV forecasting (ICCS, section 8) 

• Applying AI techniques and combining two NWPs to improve the day-ahead solar 

power forecasting (ICCS, section 9) 

These studies are validation studies which integrate mostly new data sources, that have not 

been used in the context of RES forecasting before, into existing RES forecasting models. As 

such, they necessitated ad-hoc processing and developments of RES forecasting models. 
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2 PV power forecasting using the combined 

Satellite and ASI Irradiance Forecast (DLR) 

2.1 Motivation 

Nowadays PV power forecasting is commonly performed using Satellite and NWP irradiance 

forecasts, typically processed for intra-day horizons, i.e., minutes-ahead to hours-ahead 

horizons (Agoua et al., 2018). These irradiance forecasts present a low spatial and temporal 

resolution with the advantage of having a very wide coverage. This results on accurate 

regional PV forecasts but the accuracy lowers in the case of localized PV forecasts (e.g., 

individual PV plants). In this context, forecasts based on All Sky Imagers (ASI) have been 

developed. This type of forecast is able to detect clouds with a higher spatial and temporal 

resolution and therefore present a better localized forecast performance. The DLR has 

developed in the subtask 2.3.1 of WP2 an ASI network-based forecast which has a spatial 

resolution of 50m and forecast horizons from 20 to 60 mins (depending on the cloud height and 

wind conditions).   

In order to take advantage of the individual strengths of the different forecasts, the DLR has 

also developed a highly resolved combined irradiance forecast in the subtask 2.3.2 of WP2. This 

new forecast is able to combine forecasts with very different spatio-temporal resolutions and 

achieve an optimized forecasting product that shows a lower statistical error (nRMSE and 

nMAE) than all the individual input forecasts on the highest spatio-temporal resolution 

available.  

A highly accurate highly-resolve local forecast can be very interesting for individual PV plant 

owners and grid distributors as this new information can be part of an optimized plant 

management strategy and daily decision-making strategies. Within this framework, the DLR has 

decided to perform a comparison case study of the PV power prediction performance on a 

local level using an operational Satellite forecast and the newly developed combined ASI and 

Satellite forecasts. 

2.2 Datasets and case studies 

The evaluation of the PV forecasting performance of the different irradiance forecasts are 

based on the dataset #1, defined in D.1.3 in section 2.2 as the “NorthWest meteorological 

measurement network & PV plants”. This dataset is based on the measurements performed in 

the DLR’s Eye2Sky network which is shown in Figure 1. The data used on this study is presented 

in Table 1.  

Data type Parameter 

type 

Locations Start End Duration filtering 

Study on the 

transposition 

models 

GHI, DHI, 

DNI, GTI 

LEEER 2020-03-01 2021-02-28 1 year Day 

data 

Training of the 

combined 

irradiance 

forecast 

GHI, 

temperature 

OLUOL, 

OLDON, 

PVAMM, 

OLCLO 

2020-07-01 2020-07-31 1 month Solar 

elevation 

> 20° 
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Optimization 

of the PV 

model losses 

PV Power OLD_EAST, 

OLD_CENTER 

2020-08-07 - 1 fully 

clear sky 

day  

Solar 

elevation 

> 20° GHI OUOL, 

OLDON 

Validation of 

PV power 

forecast 

PV power OLD_EAST, 

OLD_CENTER 

2020-08-01 2020-08-31 1 month Solar 

elevation 

> 20° 

Table 1: Data configuration for the evaluation of PV power prediction performance. 

 

Figure 1: Eye2sky Network overview. Camera stations (blue circles) are camera only stations, Meteo stations 

(brown circles) are camera + meteorological stations equipped with an RSIs and Reference, the green circles are 

only meteorological stations equipped with thermal radiometers + solar tracker. 

The validation of the power forecast is restrained to one summer month because for this study 

only 2 full consecutive months of the ASI network forecast were processed: 07.2020 and 

08.2020. As the combined forecasts needs 30 historical days for the training, the first available 

day for the validation using the combined forecast is the 01.08.2020, thus restricting the 

validation period to the month of 08.2020.  

To evaluate the performance of the different forecasts to predict PV power, we have selected 

2 PV sites that are inside the Eye2Sky domain. These sites are described in Table 2. They are both 

rooftop installed PV plants. 

Parameter OLD_EAST OLD_CENTRE 

Install AC power 27 kW 25 kW 

Module power 315 W 230 W 

Number of modules S1=48  | S2 = 48 110 

Modules tilt S1=10° | S2=10° 38° 

Modules azimuth S1 = 60°  | S2 =240° 253° 

Inverter nominal power S1 = 15kW| S2 =15kW  30 kW 

Table 2: PV test sites (with pseudonyms) used on the evaluation of the performance of the irradiance forecasts 

on PV power prediction. 
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2.3 Methodology 

In order to produce a PV power forecast from an irradiance forecast a physical model of the 

PV plant needs to be developed. Due to the simplicity of the PV plants, a physical model is a 

good choice as we have all the parameters necessary to fully describe it. We have chosen to 

use the simplified physical string model shown in Figure 2. The model is based on the work from 

King in Sandia National Laboratories (King et al., 2004) and implemented using the python PVLIB 

library (Holmgren et al., 2018). 

 

Figure 2: Simplified PV model for a single string. 

2.3.1 PV model description 

The basic blocks of the model are described here below. 

• Decomposition model block: for this study we have available the Global Horizontal 

Irradiance (GHI) components of the irradiance forecasts. In order to get the effective 

available irradiance on the plane of the modules, we need to calculate the Direct 

Normal Irradiance (DNI) and the Diffuse Horizontal Irradiance (DHI). For the calculation 

of the DNI, we use the DRINT model (Perez et al., 1992). The DHI is found using the closing 

equation  

     𝐷𝐻𝐼 = 𝐺𝐻𝐼 − 𝐷𝑁𝐼 cos (𝑆𝑍𝐴) 

where SZA is the Solar Zenith Angle. 

• Transposition model block: Transposition models estimate the global irradiance 

available on an inclined surface. This is known as Global Tilted Irradiance (GTI) or Plane 

Of Array (POA) irradiance in the context of PV modules. It is modelled as the sum of the 

direct, diffuse, and reflected irradiances. The models mostly differ in the way they 

calculate the diffuse component. The most commonly used transposition models are 

described in (Garcia et al., 2013). 

• Module losses block:  This block models the reflection losses on the module surface and 

the spectral loss caused by the selective spectral response of the semiconductor 

material of the PV cells. These losses are modelled using the method developed by King 

(King et al., 2004). 
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• Module Temperature block: This block estimates the temperature of the PV cell using 

the temperature model from King (King et al., 2004). 

• PV electrical model block: In this module the POA effective irradiance is translated into 

DC power (V * I) considering the losses due to the thermal state of the PV cell. Here the 

PVLIB library has several model implementations. We have opted for the SAPM model 

(King et al., 2004). 

• Inverter model block: This module determines the AC power output of the inverter as 

the result of a DC input voltage and current. Here we have opted for the Sandia Grid-

Connected PV inverter model (King et al., 2007). 

2.3.2 PV model Optimization 

Once the PV model is set up, we proceed with a 2-step optimization of the model 

• Step 1 – Transposition model selection:  Here we used several transposition models to 

estimate the POA irradiance from the GHI, DHI and DNI measurements. Then we 

compare these estimations with the measurement of the POA irradiance to find the 

model that better fits our local conditions. We choose five transposition models to 

compare: Liu-Jordan, Skartveit, Gueymard, Reindl and Harrison Coombes. The Liu-

Jordan isotropic model assumes that the diffuse irradiance is uniformly distributed over 

the sky globe. The Skartveit and Gueymard models also consider a circumsolar diffuse 

component. Reindl and Harrison Coombes add to that a horizontal brightening diffuse 

component. A detail of the models can be found in (Garcia et al., 2013) and (Harrison 

et al., 1988). The implementation has been done using the python PVLIB library for the 

Liu-Jordan and Reindl models and our own python implementation for Skartveit, 

Gueymard and Harrison Coombes. 

• Step 2 - Loss parameter optimization: in order to consider the losses that are difficult to 

infer/model from the basic PV plant characteristics (e.g., soling deposition, DC losses 

due to cabling, mismatching, shadowing, etc.) an extra loss coefficient and bias are 

added to the model: 

𝑨𝑪𝒎𝒐𝒅_𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =  𝑳 ∗ 𝑨𝑪𝒎𝒐𝒅 + 𝑩 

The coefficients L and B are found by applying a linear regression on the modelled and 

measured AC power. 

2.3.3 PV plant forecast  

Once the PV models are optimized for the individual plants, we proceed to calculate the local 

PV power forecast produced for each of the irradiance forecasts inputs. The forecasts used on 

this study are: 

• Satellite based forecast (sat): This forecast is based on the Heliosat 3 method (Hammer 

et al., 2003 and Hammer et al., 2015). This method uses the raw images from a satellite 

(Meteosat Second Generation or MSG) to generate a Cloud Index (CI) image. From 

the CI images Cloud Motion Vectors (CMVs) are calculated and used to extrapolate 

the CI into the future. This forecasted CI images are then used to calculate the 

irradiance value for every pixel. This is done by multiplying the forecasted CI values with 

irradiances derived from a clearsky model.  

• ASI network forecast (ASInet): This forecast was developed on the DLR’s Eye2Sky 

network (see section 2.2) and it is fully described in the deliverable D2.3.1. The ASIs on 
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this network are used to derive a segmented cloud mask, the cloud height and cloud 

speed. Then CMVs are calculated and used to extrapolate the cloud mask into the 

future. Finally, ground observations are overlaid on the cloud masks to derive irradiance 

maps. An intelligent combination of the high spatial density of ASIs (29 in 100k m2 area) 

allows to extend the spatial and temporal coverage compared to a single (or pair) ASI 

system.  

• Satellite + ASI network combination (sat+ASInet): In the Task 2.3.2 DLR has develop a 

method to combine these highly heterogenous forecasts inputs. The method is fully 

described in the Smart4RES Deliverable D2.3. In essence, the forecasts inputs are first 

homogenized in space and time. Then, historical forecasts (last 30 days) are used to 

optimize the coefficients on the linear combination of the forecast inputs. Here it is 

important to note that each forecast lead-time is optimized independently. Once the 

optimized coefficients are found, the actual forecasts (present) are combined using 

the optimized weights.  

• Satellite Persistence (sat_persis): This forecast is also based on the Heliosat 3 Method. 

The difference is that the extrapolation is done using CMVs equal to 0. That is, as if the 

clouds do not move in time and only the sun does. This forecast is used as minimum 

reference value to be compared with the other forecasts inputs as all forecasts should 

at least improve the performance over persistence.   

Table 3 summarizes the temporal characteristics of each of the forecasts used. 

Name Temporal resolution Forecast horizon Update frequency 

Satellite persistence  15 min 6 h 15 min 

Satellite  15 min 6h  15 min 

ASI network 1 min Up to 60 min 30 s 

Satellite + ASI network 

combination 

1min 30 min 1 min 

Table 3: Forecasts descriptions. 

2.4 Results and Discussion 

2.4.1 Transposition model comparison  

For this comparison we used one year of minute average data of the GHI, DHI, DNI and GTI 

(POA irradiance) measured at the Meteorological station LEEER. In this station, the POA 

radiometers are installed with an azimuth of 180° and a tilt of 30°. Figure 3 shows the monthly 

bias (left) and RMSE (right) of the estimated POA irradiance with respect to the measured POA 

irradiance. We see that all models are capable of describing the seasonal variation. All models 

show also a tendency to underestimate the POA irradiance. As expected, the isotropic (Liu-

Jordan) model presents the highest bias and RMSE of all the models. The Reindl model 

(Anisotropic diffuse sky with circumsolar and horizontal brightening) shows the lowest bias and 

RMSE of all models for all months of the year. This confirms the big influence that the anisotropic 

nature of the diffuse component can have on the tilted plane irradiance.  
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Figure 3: Monthly bias (left) and RMSE (right) of the POA irradiance estimated with various transposition models 

for the meteorological station LEEER. (1min average resolution data). 

The accurate description of the circumsolar and the horizontal brightening diffuse components 

are thus critical for the improvement of the accuracy of the POA irradiance estimations. After 

analysing these results, the Reindl model was chosen to be used as the transposition function 

on our PV model. 

2.4.2 PV model loss parameter optimization  

Once the transposition model is chosen, we proceed to the optimization of the loss and bias 

coefficients L and B of the individual PV models (see section 2.3.2). As we do not have GHI 

measurements on the PV sites, the optimization is performed using the GHI measurement of the 

nearest available meteorological station in the Eye2Sky network. Due to this, only a clear sky 

condition will be used, so that there is no significant influence of the clouds between the 2 

locations.  The day 2020-08-07 was an almost perfect clear sky day and is used for this purpose.  

As only one month of data is available for the validation, this clear sky day is enough to 

characterize the loss parameters that try to correct for soling, cabling losses, shadows, etc. on 

this time period.  For the PV site OLD_EAST the station OLUOL is used (~2.5 km from the PV plant) 

and for the site OLD_CENTER the station OLDON is used (~1 km from PV plant). 

The results for the OLD_EAST PV site are shown in Figure 4 (left).  

 

Figure 4: Optimization of the loss and bias parameters for the PV sites OLD_EAST (left) and OLD_CENTER (right). 
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On the OLUOL station, there are 2 hours of GHI measurements missing. Nevertheless, the data 

available is sufficient to characterise the losses thanks to the almost clear condition.  We see 

that the AC modelled power has a loss factor of L=0.73 and a bias of B=-602.09 W, that is, a 

normalized bias of nB=2.23%. The 27% of the power loss should be due to DC losses, Soiling, 

Shadowing, or other unknown condition. After applying the correction factors, we find a very 

good agreement between the AC powers. Before applying the correction, the MAE = 4239 W 

(nMAE = 15.7 %) and after correction MAE_cor = 212 W (nMAE_cor = 0.78%). The small shift seen 

on the optimized power is due to the distance between the 2 sites.  

The same was done on the PV site OLD_CENTRE and the results are shown in Figure 4 (right). In 

this case, we see that the model alone does a good characterization of the PV plant. Here a 

loss factor of L=0.99 and a bias of B=-31.93 W (nB=0.13%) are found. This PV model needs almost 

no optimization. Nevertheless, we see some strange behaviour of the PV power on this clear 

day. We see possibly some shadow effects (dip) in the morning hours as some reflection (jump) 

on the evening. We see also clearly the shift to the afternoon hours on the diurnal pattern that 

is due to the west facing PV configuration (azimuth=253°).  

2.4.3 High resolution PV forecasting comparison  

Before showing the PV forecast evaluation, we will evaluate the PV power analysis (forecast 

lead-time 0) for the different methods.  

In Figure 5 we see the scatter density plots between the AC power generated by the system 

OLD_EAST and the ones generated with the 4 different forecast sources described in section 

2.3.3.  

 

Figure 5: Correlation of measured and modelled AC power for the analysis case (forecast lead-time 0) of all 

forecast sources on the site OLD_EAST (1 min resolved data for the month of 08.2020). 

We see that in general the highest density of the points falls into the high irradiance/power 

situations. Due to the low spatial and temporal resolution, the satellite-based methods have 

problems to estimate the intermediate power values / mixed sky conditions.  By the contrary, 
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the ASI method performs much better on these intermediate conditions. As noted by our 

Partner EMSYS in chapter 3, the measurements of the ASI network correlate well at the up - and 

downward ramps with the measured power from the PV plant. This is evidenced here by the 

slope and r2 values (0.89 and 0.88) which are closer to 1 which is not the case on the satellite-

based methods. It is important to note that the PV output at lead-time 0 (known as analysis) for 

the ASI and the Sat + ASI methods are very similar (also similar slope and r2 coefficients). This 

shows that for the analysis (lead-time 0) the combination method learned that the weights for 

the ASI data are much higher than the ones for the Satellite.  There is a clear superiority of the 

ASI and Satellite + ASI methods over the Satellite only based analysis measurements 

Figure 6 shows the same analysis measurements for the PV site OLD_CENTER. Here we see a 

very different behaviour compared to the PV site OLD_EAST, which is only at about a 3 km 

distance.  In the OLD_CENTER site the higher density of points is found for all sources on the 

lower power values (1kW to 2kW). This response seems to be linked to the fact that our data is 

restricted to values with solar elevation > 20°. As this is a west facing system with an elevated 

tilt, the filtering of these data clips the power production on an instant of the day where the 

generation capacity is still not negligible (see Figure 4). So, our 20° filter artificially moves the 

distribution peaks to the low power values. At the end, the dataset is still valid, but just has less 

available data.  

Having in mind the apparent distribution shift to low power values, we find in Figure 6 a similar 

statistical response of the forecast models as for the OLD_EAST site. The best correlation for this 

analysis measurements (lead-time 0) is found on the ASI model (slope=1.04, intercept=8.4 W, 

r2=0.9). The higher probability of low power values on the dataset also emphasises the fact that 

the ASI based method copes very well with lower values of irradiance that can be due to 

variable cloud conditions.  This is seen with the better statistical correlations of the ASI only with 

respect to the ASI + Sat method (difference that is not seen in the OLD_EAST). 

 

Figure 6: Correlation for measured and modelled AC power for the analysis (forecast lead-time 0) of all forecast 

sources on the site OLD_CENTER (1 min resolved data for the month of 08.2020). 

Now we continue with the analysis of the PV forecasting performances at higher lead-times.  
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In Figure 7 we find the nMBE, nMAE and nRMSE of the forecasted power estimated with the GHI 

values from the 4 different forecasting methods. This error scores are normalized to the installed 

capacity. First, we see that as expected, all forecast methods outperform the nMAE and nRMSE 

metrics of the satellite persistence method. The Satellite nRMSE and nMAE show a strange U-

like behavior for the values between lead-times 0 – 15 and 15 – 30. This comes from the fact 

that the satellite forecast is only available every 15 minutes (0, 15, and 30 minutes in this case). 

All other values for this method are interpolations. The interpolation has an averaging effect, 

that translates in a slight improvement of the error metrics on the interpolated values.  

Also as expected, the nRMSE of the ASI forecast outperforms the one of the satellite forecast 

on the lower lead-times. This is due to the higher resolution data, which translates to a higher 

quality local information on the cloud situation.  As lead-times increase, the clouds move over 

the field of view of the camera network without other clouds coming into the domain (no 

information outside the network domain).  After 16 min, the nRMSE of the satellite outperforms 

the ASI. This means that statistically, the ASI network forecast has a noticeable advantage over 

the satellite until the lead-time 16 where the cloud information is lost or is too degraded to give 

accurate forecasts.  

More interesting is now the combined ASI + satellite forecast. This method shows a bias near 0 

for all lead-times. It also outperforms all the other forecasts on nMAE and nRMSE for all lead-

times. The improvement on nRMSE on the worst case (lead-time 0) goes from 7.04% (ASI) to 

6.73% (ASI + sat) which corresponds to an improvement of 4.4%. In the best case (lead-time 

30), the improvement on nRMSE goes from 11.4% to 9.04% which represents an improvement 

of 14.86%.   

 

Figure 7: PV forecast performance for the site OLD_EAST. All data used has a temporal resolution of 1min. The 

Combined ASI + SAT forecast was trained on 07.2020 using 4 Eye2sky stations: OLCLO, OLDON, OLUOL, PVAMM. 

nMBE, nMAE and nRMSE are normalized to the installed capacity. 

Table 4 shows the summary of the nRMSE for the PV forecasting methods based on SAT, ASI and 

ASI + SAT along with the improvements of ASI + SAT over the other 2 methods.  
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Lead-time  
[min] 

Satellite 
 [%] 

ASI  
[%] 

Satellite+ ASI 
[%] 

Improvement of  
Sat + ASI  

over SAT [%] 

Improvement  
Sat + ASI  

over ASI [%] 

0 10.09 7.04 6.73 33.30 4.40 

5 9.89 8.70 7.91 20.02 9.08 

10 9.93 9.56 8.38 15.61 12.34 

15 10.36 10.23 8.86 14.48 13.39 

30 10.73 11.04 9.40 12.40 14.86 

Table 4: nRMSE of PV power forecast method for selected lead-times on the OLD_EAST site. Improvement of 

nRMSE of Satellite + ASI over only SAT and only ASI. 

Here we demonstrate the potential improvement that the ASI forecast brings to the Satellite 

forecast when they are combined together. The improvement on RMSE from 5 – 30 min ahead 

lies between 9.08% and 14.86%.  This outperforms the improvements for solar power production 

RMSE of 9% - 12 % defined on the KPI 1.2.a in the deliverable D1.1.  

The same analysis was also performed to the site OLD_CENTER (Figure 8). We first note that this 

system shows a lower power prediction performance than that of the site OLD_EAST. This could 

be due to the clipping of the power values on times where still a non-negligible part of the 

power is being generated (as discussed previously). Nevertheless, this plant also shows the 

same trends on forecast improvements (Table 5). The improvement on RMSE from 5 – 30 min 

ahead lies between 15.66 % and 17.78 %.  This site also outperforms the improvements for solar 

power production RMSE of 9% - 12 % defined in the KPI 1.2.a on the deliverable D1.1.  

 

Figure 8: PV forecast performance for the site OLD_CENTER. All data used has a temporal resolution of 1min. The 

Combined ASI + SAT forecast was trained on 07.2020 using 4 Eye2sky stations: OLCLO, OLDON, OLUOL, PVAMM. 

nMBE, nMAE and nRMSE are normalized to the installed capacity. 
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Lead-
time  
[min] 

Satellite 
 [%] 

ASI  
[%] 

Satellite+ ASI 
[%] 

Improvement of  
Sat + ASI  

over SAT [%] 

Improvement  
Sat + ASI  

over ASI [%] 

0 13.76 11.27 10.01 27.25 11.18 

5 13.62 12.20 10.29 24.45 15.66 

10 13.99 13.44 11.05 21.02 17.78 

15 15.18 14.31 11.95 21.28 16.49 

30 15.62 15.70 13.21 15.43 15.86 

Table 5: nRMSE per forecast methods for selected lead-times on the OLD_CENTER site. Improvement of nRMSE of 

Satellite + ASI over only SAT and only ASI. 

The combination of the ASI forecast with the Satellite forecast clearly brings statistical 

improvements on the power prediction error. The optimization of the combined forecast was 

based on 4 reference irradiance points (OLCLO, OLDON, OLUOL, PVAMM). Having denser 

reference irradiance measurements on the region could still bring more improvements on the 

error as sites far away from this point will be penalized by the lower quality of the information.  

Also, the use of an extended ASI grid will allow to extend the forecast horizon of the combined 

forecast further than the 30 minutes shown here. To further validate this method, ASI forecasts 

on other months of the year should be processed and combined with satellite in order to assess 

the seasonal transferability of the results. This was not done here due to unavailability of the 

data.   
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3 PV power forecasting with SkyImager data 

(EMSYS) 

3.1 Motivation 

Energy & meteo systems operates PV power forecasts based on irradiance forecasts from NWP 

models and uses power measurements from PV plants to improve forecasts in the short-term 

range of a few hours. The NWP forecasts are updated only every 1-12 hours and have a latency 

of 1-4 hours due to processing time. Furthermore, they have a coarser spatial resolution of 2-40 

km. The PV measurements are available with a latency of only a few minutes, but they are 

limited to the past and not available for all PV plants. 

Therefore, forecast data with high temporal and spatial resolution is needed to better forecast 

the short-term range. A promising technique is to use the data from the Skyimager network 

Eye2Sky established by DLR in the Northwest of Germany as described in section 2.2 and also 

in Smart4RES Deliverable 2.3. The Skyimager network consists of several distributed sky imaging 

cameras together with several other measurement instruments (e.g. radiometer, ceilometer) in 

order to detect clouds and their movement with a high temporal and spatial resolution. The 

cloud movement is then extrapolated to forecast the up-coming 0-30 minutes. The output of 

the Skyimager method are irradiance forecasts which may be used as an additional data 

source to NWP forecasts and PV measurements to improve the short-term PV power forecasts 

on this time scale. 

In the presented case study, the forecasts from the DLR Skyimager network are used as an 

additional data source to the state-of-the-art forecast model Suncast of energy & meteo 

systems based on NWP forecasts and PV measurements. 

3.2 Case studies 

In this case study, irradiance maps from the DLR’s Eye2Sky network in Northwest Germany have 

been used and evaluated against measurements of the PV plant located in the western part 

of Oldenburg.  

he Eye2Sky network consisted of 27 operational from 39 planned measurement stations at the 

time of the case study. These stations are equipped with All Sky Imagers (ASIs) and some with 

additional instruments like radiometers or ceilometers.  The images of the ASIs are used to derive 

cloud masks, cloud heights and cloud speeds. Then, cloud motion vectors are calculated to 

extrapolate the cloud mask into the future. Finally, the extrapolated cloud masks are 

transferred into irradiance maps using radiative transfer equations and additionally radiometric 

measurements. 

These irradiance maps have been reprocessed by DLR for 3 periods in 2020 (March, June and 

November). The periods were chosen because they mainly contain days of broken clouds for 

which we expect the largest improvements in the short-term forecast. In such situations, the 

Skyimager method can distinguish clouds against the clear sky and extrapolate their 

movement to the near future. The irradiance maps consisted of real-time data retrieved from 

the measurements and forecast data with 20 minutes horizon (hereafter called nowcasts). The 

location of irradiance maps and the details of the data set are described in Table 6. 
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Spatial and temporal details of the irradiance maps 

 

 

spatial resolution 800 x 800 pixel (40 x 40 km) 

time periods 01.03.-15.03.2020 

01.06.-30.06.2020 

18.11.-29.11.2020 

data types real-time nowcast 

temporal resolution 30 sec 60 sec 

forecast horizon - up to 20 minutes 

Table 6: Details of the DLR’s Eye2Sky data set and their location in Northwest Germany. 

 

3.3 Approach 

The DLR Skyimager real-time and nowcast irradiance data have been further processed and 

analysed by energy & meteo systems. 

The first step was to was to extract the data from the irradiance maps for the location of the 

PV plant. Then the irradiances are converted to power values by using the real-time irradiances 

and historic PV power measurements for calibration. Figure 9 shows the scatter (left) of the 

power derived from the Skyimager irradiance against the measured power from the PV plant. 

The majority of data points are close to the diagonal with some outliers for the different time 

periods indicated by the different colours. A closer look on the timeseries for a single day (right) 

shows that the power derived from the real-time irradiances (red) correlates well at most of the 

up - and downward ramps with the measured power from the PV plant (black). 

 

Figure 9: Scatter plot of power derived from Skyimager real-time irradiances against power from the PV plant for 

the three different time periods (left) and time series plot of those data for 2020-06-06 (right). 
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Figure 10 shows an example of an irradiance map (left side) with the location of the PV plant 

(red cross) and the time series (right side) of the real-time power from the irradiance map (red 

line) together with the power measurement (black line) from the PV plant (right side: the lower 

plot is a closeup of the upper plot). The lower right plot additionally shows the 0–15-minute 

power nowcast from the irradiance map (cyan line), which mostly predicts the PV power quite 

accurately, especially at the ramps. The overestimating of the real-time power at 12:30 to 12:35 

and the power nowcast at 12:36 to 12:39 comes from the fact that the detected cloud is just 

at the edge of the PV plant and was slightly more southwards in the irradiance maps. 

 

Figure 10: Example of a Skyimager irradiance map (left) with the location of the PV plant (red cross) and the 

timeseries (right) of the extracted power from the real-time irradiances (red) and the nowcast (cyan) together 

with the measurement from the PV plant (black). The lower right plot is a close-up of the upper right plot. 

 

The second step was to integrate the Skyimager nowcasts into the state-of the-art model of 

the forecasting system Suncast illustrated in Figure 11: it is based on a physical model and uses 

NWP forecasts (1) and PV measurements (2) as input data. In this case study, the Skyimager 

data (3) are integrated as additional data source. 

For the evaluation three kinds of nowcasts have been processed: 

- the Suncast power forecast based on NWP forecasts and PV measurement (1+2) 

- the Skyimager nowcast based on the data from the irradiance maps only (3) 

- the Skyimager+Suncast forecast using all three data sources (1+2+3) 

The Suncast forecast has been processed as a reference in order to evaluate the 

improvement of the Skyimager nowcasts. 
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Figure 11: Scheme of the forecasting system Suncast and its components: NWP forecasts (1), measurements from 

PV plants (2) and Skyimager data as additional data source (3). 

 

3.4 Evaluation 

The Skyimager irradiance data have been analysed and evaluated against the measured 

power from the PV plant. The objective of the Skyimager nowcast is to improve the forecast of 

the upcoming 15-30 minutes compared to state-of-the-art nowcasts by 9-12% relative 

improvement of RMSE as defined for KPI 1.2 for solar energy. In this case study, the Suncast 

forecast is the reference to evaluate the improvement of the Skyimager and 

Skyimager+Suncast forecasts (described in Section 3.3). The forecasts have been processed 

for the prediction times every 15 minutes during daytime. The Skyimager nowcasts and the PV 

measurements have an original temporal resolution of 1 minute. They are aggregated to 15-

minute resolution as this is the common resolution for operational evaluations. As the Skyimager 

nowcasts have a prediction horizon of maximum 20 minutes, only the first 15 minutes are 

evaluated here, resulting in one averaged prediction value for each prediction time. The 

Suncast forecast has already been processed on 15 minutes resolution.  

Figure 12 shows an example of the nowcasts for 2020-06-06 (left: Suncast forecast, right: 

Skyimager+Suncast forecast). Each dot in the timeseries represents the forecast for the 

upcoming 15 minutes. For example, the dot at 12:00 is the forecast at the prediction time 12:00 

for the upcoming 15 minutes ranging from 12:00 to 12:15. The Skyimager+Suncast forecast 

aligns with the up- and downward ramps of the measurement quite well. The Suncast forecast 

shows a temporal delay to the PV measurement, as it does not have the highly resolved 

information on moving clouds as the Skyimager forecasts.  

 

 

 

 

 

 



D3.1 Toolbox of multi-source data approaches to short-term RES forecasting 

 

 

28 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

 

 

Figure 12: Timeseries of measured power from the PV plant (black) with Suncast forecast (left) and 

Skyimager+Suncast forecast (right) for 2020-06-06. 

 

3.5 Results and Discussion 

The quantitative evaluations for the three kinds of shortest-term forecasts (described in Section 

3.3) are performed for the time periods in March, June and November 2020 (described in 

Section 3.4). The results are given in Figure 13 for each of the three time periods. They show the 

RMSE for each day (dots) together with the average over each time period (dashed lines). 

The average RMSE of the Skyimager nowcast improved compared to the Suncast forecast from 

5.7% to 4.7% in March, from 6.7% to 5.8% in June and from 1.9% to 1.7% in November. For the 

Skyimager+Suncast forecast the average RMSE decreased further to 4.4% in March, 5.3% in 

June and 1.6% in November. Thus, we achieved an improvement of the RMSE of 21-23% for the 

evaluated months. As the magnitude of improvement was similar for the three periods from 

different seasons, we can expect a similar improvement throughout the whole year. At single 

days with broken clouds, the daily RMSE of the Skyimager forecasts even reduced by almost 

one half compared to the Suncast forecast, e.g., on 2020-06-07 from 14% to 8%. Furthermore, 

there were almost no days for which the daily RMSE of the Skyimager forecasts significantly 

increased compared to the Suncast forecast.  

In this case study we demonstrated the potential of the Skyimager data for PV power 

forecasting in the short-term range. The results show a very good improvement of the shortest-

term predictions for the up-coming 15 minutes using Skyimager forecasts as additional data 

source. The RMSE reduced by 21-23% for the Skyimager forecasts compared to the state-of-

the-art reference. This exceeds the objective of an improvement of 9-12% RMSE for 15-30 

minutes defined in KPI 1.2. By expanding the network, the forecast horizons could even be 

extended. As the Skyimager method predicts the cloud movement based on highly resolved 

measurements, it enables to detect the up - and downward ramps more accurately. This is of 

special interest for huge PV plants connected to a sparse power grid, as single clouds could 

cause instabilities in the grid.  
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Figure 13: Daily RMSE of Suncast forecast (orange), Skyimager nowcast (cyan) and Skyimager+Suncast forecast 

(violet) for the three time periods in March (upper), June (middle) and November (lower). The dashed lines are 

the averaged RMSEs over each time period. 
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4 Improved thunderstorm correction for PV forecast 

(EMSYS) 

4.1 Motivation 

During thunderstorms dense and towering vertical clouds form. The shadows that are casted 

significantly reduce the performance of PV plants. Typically, there is a sudden reduction in 

power for individual PV plants. The production remains at a low level for a certain period of 

time. The sky then clears up and the power increases again.  

The NWP models can only inadequately describe such processes due to the coarse grid size 

(10-50 km for global models) which is much coarser than the processes which lead to 

thunderstorm formation. In case of isolated thunderstorms, it is impossible to exactly predict 

when and where a thunderstorm might develop and which track will it follow. Another problem 

is the fast sideward spreading of the ice clouds at the top of the troposphere, that leads to the 

typical anvil shape of the thunderstorm. This is often underestimated in NWP models, especially 

for larger thunderstorms or clusters of thunderstorms. In any case, the sharp drop in 

performance for individual farms is not included in the power forecast from NWP. In case of 

thunderstorm clusters that span in larger regions, also the portfolio forecast can be affected by 

this problem. 

With a shortest-term correction, it is possible to react to differences between the base forecast 

and live measured production values. The correction picks up on the live measured values and 

converges slowly back towards the base forecast. Such standard corrections are usually too 

slow to react to the sudden drop and increase in power in case of thunderstorms leading to 

large errors especially in the transition phases. With the additional information as to whether 

there is a thunderstorm or not, the correction can be designed differently depending on the 

situation. 

4.2 Approach 

A different form of short-term adjustment should take place during thunderstorms. Two criteria 

are defined to determine whether thunderstorm effects are present: Lightning must be 

measured within a 10 km radius of the solar farm and there must be dense clouds. The PV Clear 

Sky Index quantifies cloudiness. An approximation of this index is described as measured power 

divided by a clear-sky forecast. If the index is less than 0.3, dense clouds are formed. The 

thunderstorm is considered as ended when the PV Clear Sky Index rises above 0.3 again.  

The standardized shortest-term correction (predstc) is based on the live measurement values 

(meas) and the base forecast (pred0). The measured values of the last hour are averaged, so 

that the correction does not apply directly to the measured values (see blue curve in Figure 

14). The difference in error between the mean measurement and the prediction decreases 

exponentially, so that at sunset the fit and the forecast converge.  

In the case of thunderstorms, two different forecasts are combined. The first prediction is based 

on persistence. It is assumed that the cloudiness will remain the same at the time of calculation. 

The second prediction is the base prediction (pred0). In this study, three combination 

approaches are compared to develop adaptations. 

• prednc: From historic power data, the average thunderstorm duration has been found 

to be 60 minutes. At the time of the adjustment, it is calculated how long the 

thunderstorm has already had an impact on performance. For the following period of 
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time (t = 60min – previous duration) the persistence prognosis is assumed (see green line 

up to 10:45 in Figure 14). A new calculation of the standard shortest-term adjustment 

then takes place. The error difference decreases over a longer period of several hours. 

• predexp: The first step follows the same principle as prednc (see green line in Figure 14). 

The error difference then decays within an hour and the shortest-term forecast 

converges to the base forecast. 

• predweight: The persistence forecast and the base forecast are combined with each 

other. The weighting factors change with each time step. At the beginning, the 

persistence forecast is assumed to be 100%, at the end of the day it is 0% (see purple 

line in Figure 14). The factors correspond to the probability that a thunderstorm influence 

is still present. 

 

Figure 14: Base forecast (red line) and the different shortest-term corrections (coloured lines) during two days 

with thunderstorms. Measurements in black. 

The main parameters for the adjustment are the temporal lengths of the thunderstorm 

influences. The average duration and the probability that the thunderstorm influence will 

subside after a certain period of time have been determined empirically.  
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4.3 Case studies 

In the experimental studies, 500 solar farms in Germany were examined. The period under 

consideration is from April to August 2020. The base forecast is a meteorological combination 

forecast from various global and local models. The live measured values and the forecasts are 

normalized to the installed capacity.  

The lightning data are from the service provider nowcast and are available in real time in a 

spatial grid (see Figure 15). The values in the grid points correspond to the number of detected 

flashes. However, only the information as to whether or not lightning was measured within a 

radius of 10 km is used. A logical time series with the values 0 and 1 is created for each solar 

farm. 

 

Figure 15: Example of the lightning data by nowcast used for thunderstorm detection. 

 

4.4 Evaluation 

The prediction quality is evaluated on farm level. Only calculations with thunderstorms during 

the day are taken into account. The reference time series are the live measured values. The 

considered error measurements are RMSE, SDE and Bias. Forecast horizons up to three hours 

are important.  

For each calculation of the shortest-term adjustment, the pairs of forecasted and measured 

points are taken up to the forecast horizon. The mentioned error values are calculated. There 

is one error value per calculation and forecast horizon. This is averaged across all farms and 

presented as a function of the forecast horizon in Figure 16. 

The error values are calculated for the base forecast and the various short-term adjustments. 

The comparison shows whether significant improvements were achieved through the 

situational adjustments.  
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4.5 Results and Discussion 

The analysis of historical thunderstorms shows and quantifies their influence on the performance 

of solar farms. Detected thunderstorms according to the defined criteria have an impact of at 

least 10 minutes to several hours on the performance. The average impact duration is 60 

minutes.  

 

Figure 16: Mean values of RMSE (top), SDE (centre) and Bias (bottom) as a function of forecast horizon for 

different shortest-term corrections. 

For comparison, the mean values of all calculated error values per adjustment type are shown 

depending on the forecast horizon (see Figure 16). All adjustments have significantly lower 

errors than the base forecast pred0. The increased error value of the standard correction at the 

time of calculation is caused by the averaging of the measured values. For a forecast horizon 

of 15-30 minutes, this error is not relevant. 

• The predexp fit shows a high bias. Because of the fast exponential approach to pred0, 

the bias at predexp is positive. The variation in error, represented by the SDE measure, is 

more than 74% higher than the standard fit at a one-hour forecast horizon. The RMSE is 

also significantly higher. This can be explained by the variable length of the 

thunderstorm influence. The assumption of the mean length is mostly inappropriate. 

• The adaptation prednc also assumes an average thunderstorm length, but due to the 

slow approach to pred0 there is no abrupt change after the assumed thunderstorm 

duration. This leads to a low variation of the individual errors as well as a lower RMSE 

(over 20 % less than predstc). However, the bias is negative because the fit is consistently 

below pred0. The power increase after a thunderstorm is therefore not shown. 

• The weighting prediction predweight, on the other hand, is almost unbiased and has a 

significantly lower RMSE than the standard fit predstc. With a forecast horizon of one 

hour, the mean improvement is 14%, with two hours it is 10%. The improvement in the 
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SDE is 9% from a two-hour forecast horizon. The empirical distribution of the weighting 

factors is not focused on a mean value, but covers the broad spectrum of thunderstorm 

variations. 

The approach of fitting with time-varying weighting factors shows promising results in this test 

case. This method can help to improve the short-term forecast for solar at the individual farm 

level. Especially the time horizon of up to 2.5 hours can be significantly improved. 
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5 Wind power forecasting based on improved 

power curve modelling (EMSYS) 

5.1 Motivation 

In EMSYS’ short-term power prediction system, the wind power curve plays a crucial role as it 

relates wind speed forecasts provided by an NWP to the predicted power output of a wind 

farm. Therefore, accurate power curve modelling is crucial for precise predictions. However, in 

practice, models are often inaccurate to some degree for various reasons, e.g., due to noisy 

training data (Zhao et al. 2018). 

We propose various improvements for wind data filtering. Furthermore, we demonstrate how 

flexible machine learning methods provide advanced models for wind power forecasting. In 

particular, we show that additional features can enhance the predictions and provide a more 

comprehensive perspective on the actual weather situation on site. 

5.2 Outlier data filtering 

Outlier detection is the core component of data filtering. With various improvements of an 

existing method for outlier detection, we create better training data. Our proposed 

improvements lead to a better detection of power outliers, especially power plateaus in the 

speed-power view originating from curtailments (see Figure 17). Based on these outliers, we 

identify latent power outliers in the temporal view (see Figure 19). 

 

Figure 17: (a) The highlighted points were detected with the method of Zhao et al. (2018). The outlier plateau is 

identified. However, the vertical green bar in the middle consists of many false positives. (b) The result of our 

variant of this method. 

One approach to remove power plateau outliers is presented by Zhao et al. (2018). We 

implemented the method of Zhao et al. (2018) according to the description in their paper. 

Looking at the results of their method for our datasets, we noticed the following shortcomings. 

On the one hand, the quartile method often seems to remove too many data points, which 
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may even result in a step pattern in the scatter. On the other hand, in some parts the method 

still does not remove enough data points, so that the removal using the DBSCAN-based filter in 

the second step does not work as desired. Sometimes a lot of good data is removed when 

there are gaps in the data scatter, as only the topmost cluster is kept. Both phenomena are 

clearly visible in Figure 17(a). 

Motivated by the weaknesses of the discussed method, we propose approaches of 

improvement. Vertical cuts through the data are prevented by allowing outlier clusters to only 

have a maximum height. The maximum height is set dependent on the installed capacity of 

the wind farm. We keep all clusters that comprise at least 10% of the power range. The result of 

this improvement is displayed in Figure 17(b). Another shortcoming is that the assumption on 

which the above-described horizontal quartile method is based, namely that extreme values 

with respect to a bin’s data median are outliers, is often too strong. Data points at the cut-out 

wind speeds should not be removed in many cases. If a filter method removed all data points 

in a wind speed bin, then we would rather keep all data points. This is another simple, yet very 

effective improvement. 

In addition to that, the method does not remove the values that originate from unavailabilities, 

which are hidden in the dense scatter. We call these latent outliers. This becomes clear when 

looking at the heatmap in Figure 18. For the filtered data there is still a relatively large number 

of data points where the plateaus have merged into the dense scatter (approx. at [15m/s, 10 

MW]). This indicates that there are power outliers in the data, but hidden between regular data 

points. 

 

 

Figure 18: The left plot shows a heatmap of the raw data in the speed-power-view. The right plot shows a 

heatmap of the data after we applied the discussed outlier detection method, where the plateau was removed. 

We use a sliding-window filtering approach to identify outliers which are not detected by the 

previously described method. The sliding-window filtering uses the temporal information of the 

data. Here, previously marked samples are treated as outlier candidates. Every data point 

which is temporally surrounded by a certain amount of outlier candidates is flagged as an 

outlier. Even if a value was flagged as an outlier (candidate) before, this function does not 

necessarily flag it as outlier as well, if the fraction of outliers in its surrounding is small enough, 

see Figure 19. 
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Figure 19: Example of sliding-window filtering based on outlier candidates. The black dots show valid data points 

in the time series view. The red dots show outlier candidates. The result of the sliding-window filter is indicated 

by the smoothed signal in grey. 

5.3 Wind power forecasting based on improved 

power curve modelling 

We show that the multivariate – using many input features – approach to wind power curve 

modelling with flexible state-of-the-art machine learning methods, like neural networks and 

gradient boosted trees (XGBoost), is advantageous. 

For the comparison we use different models. The power curves produced by the reference 

model depend on wind speed and wind direction. For each wind direction sector, a piecewise 

linear function over the wind speeds is numerically optimized. The “method of bins” is a simple 

standard procedure for obtaining a power curve based on wind speed. For each wind speed 

interval, called bin, with a width of 0.5 m/s, the mean of the past observed power values within 

the interval is calculated and used as prediction. The method of bins is a widely used baseline 

approach. 

Tree boosting is a popular and widely used machine learning method based on decision trees. 

XGBoost is a high-performance implementation of the ensemble model gradient boosted 

decision trees. It is a good approach for regression with tabular data. The XGBoost model and 

training algorithm have several hyperparameters that have to be tuned to get a good 

prediction model. The number of trees K, which is equivalent to the number of boosting 

iterations, is one important parameter affecting the model complexity. Other important 

hyperparameters are the maximum depth of the trees, the learning rate, the minimum child 

weight and minimum loss reduction1. 

Neural networks (NNs) are another popular and widely used machine learning method that is 

also suitable for this kind of regression problem. Neural networks are able to learn complex non-

linear patterns from data. Here we use feed-forward neural networks implemented with Keras2. 

Finding a good neural network architecture and good hyperparameters in general is a 

challenging task. As there are only around one dozen numerical values as input at most, based 

on which the power is predicted, it is likely that simple feed-forward architectures with few 

layers and few neurons in each layer are sufficient. Besides the architectural hyperparameters, 

for the training of the batch size, weight regularization, learning rate, activation function, 

optimizer and potential dropout are tuned. 

                                                 
1 More details on https://xgboost.readthedocs.io 
2 Retrieved from https://keras.io 

https://xgboost.readthedocs.io/
https://keras.io/
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5.4 Evaluation 

The outlier data filtering approaches are mainly evaluated qualitatively. Experienced 

meteorologists, who work with this kind of data on a daily basis can judge the results of outlier 

data filtering in the speed-power-view. For evaluation of power curve models, we use samples 

from one year for training and samples from the following year for evaluation. We used a 

specific variant of cross validation for hyperparameter search. We work with time series data 

and in order to guarantee that a model is not validated on samples that are older than the 

training samples, we used an n-fold times series split. This means that the sorted time series is 

divided into n + 1 equally sized parts and each part, except for the first, is used once for 

validation. The default metric is the root-mean-square error (RMSE). In practice, however, we 

typically provide additional error scores and perform visual inspections of the prediction versus 

the measurement time series. Another aspect of evaluation is to investigate the importance of 

different features, which is also discussed in the next section. 

5.5 Results and Discussion 

Figure 20 shows a comparison of different methods to create power curve models. For the 

machine learning methods that can deal with an arbitrary number of input features several 

models with different feature sets were trained. On average the XGBoost model was the best 

model here. 

 

Figure 20: This plot shows the mean RMSE for various models for six datasets from different wind farms. For the 

three machine learning methods several models with different feature sets were trained. If no features are given 

in brackets, all available features were used. Each model was trained on the data from one year and evaluated 

on the data from the following year. The RMSE values were scaled for each dataset, such that the reference model 

has an RMSE of 1.0. The error bars show the bootstrap confidence intervals with 95% confidence level. 

Looking at wind speed and wind direction only, which are the features that the reference 

model uses, neural networks (NNs) improved the predictions on average by three percent 

RMSE and XGBoost improved the predictions on average by more than five percent RMSE, 

compared to the reference model. The XGBoost model with additional features had an almost 
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eight percent lower RMSE than the reference model. This is a great improvement. For the NN, 

the results with additional features were not consistently better. The NN with all available 

features was worse than the one without humidity and temperature, but with all other features. 

This indicates an overfitting of the NN with all available features. The (k Nearest Neighbour) kNN 

model was always worse than the reference model. However, we also did not expect that the 

kNN model produces good results, since it was hardly tuned at all and not likely to generalize. 

The purple bar depicts the result for the constant prediction of the average power of the 

training dataset without using any features at all. 

Figure 21 gives an overview of the importance of various features for multiple wind farms. It 

shows the total gain, an XGBoost-specific measure of feature importance, for several datasets. 

As expected, the wind speed is always the most important feature. However, as the average 

importance of the wind speed is around 80%, this means that splits on the other features caused 

20% of the total gain. On average, the second most important feature was the wind direction. 

Azimuth and elevation follow as third and fourth most important features with similar 

importance scores. One possible explanation for their importance is that they indirectly add a 

temporal component to the model, which helps to characterize the actual weather situation 

on site. 

 

Figure 21: This figure shows the total gain (to be interpreted as “importance”) for various features for multiple 

datasets. The bar plots show the average importance values for the respective feature. The scatter plots (with 

jitter for visualization purposes) show the raw importance values. The y-axes are broken to get detailed insights 

into the importance scores. 

Overall, it is important to note that the variability of the importance values is high for some 

features. Features can be correlated, resulting in the model to learn e.g., only from one of 

several correlated features, which decreases the apparent importance of the correlated 

features. This means that there is no absolute importance of the different features, but that 

these depend on the wind farm, weather model and the model’s choice. We always have to 

understand these importance scores as what was important to the model. The fact that the 

importance for humidity had a low value here means that it was not important for these 

models, but not that it is generally unimportant for all possible power curve models. 

Nevertheless, it is relevant to know the importance scores for a specific model to explain its 

decisions and gain insights for improvement. 
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We demonstrate how flexible machine learning methods, like neural networks and especially 

gradient boosted trees, provide advanced models for wind power forecasting. In particular, 

we improve power curves through outlier data filtering and additional features. 
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6 LiDAR based second-ahead forecasting of wind 

power (DTU) 

6.1 Motivation 

Nacelle-mounted lidars have the capability of providing a preview of the wind field in front of 

the rotor. Such a preview is beneficial when controlling the wind turbine to improve power 

performance and reduce structural loads. Here in this task, we aim to implement and test novel 

forecasting methods using lidar observations which adhere to the constraints of real-time 

usage. As more and more lidars are installed on the turbines globally, the investigation also 

reflects on the potential benefits and drawbacks of a real-world fulfilment of such a system.  

The potential benefits of lidar-based forecasting as analysed here are two-fold: 1) Power 

forecasting, which can enable increase in power production through an improved 

representation of the real-time inflow via detection and mitigation of under-performance as 

well as flow (or wake) control for optimal energy extraction from a wind farm; 2) (Structural) 

Load forecasting, which can be utilised to reduce the structural (both fatigue and extreme) 

loads to increase turbine lifetime and reduce costs/LCOE. 

6.2 Overall Approach 

The study performed in this task investigates the potential of using lidars and machine learning 

for seconds-ahead forecast of the electrical power and blade root flap-wise bending moment 

on an 850kW Vestas V52 wind turbine. For that, both a 2-beam and a 4-beam lidar units are 

analysed and the added value of the latter instrumentation is quantified. It should be noted 

that the forecasts take lidar measurements as inputs exclusively as the operational condition 

of the turbine ahead of time is unknown.  

6.3 Case study for model benchmark 

6.3.1 DTU Risø Test Site 

The experimental data used in this analysis have been conducted in the period between 01/08-

2020 and 01/12-2020. The test site is DTU Risø Campus which is located next to Roskilde Fjord, 

Denmark (UTM coordinates 55.68629⁰N, 12.09759⁰E). Figure 22 shows the geographical location 

of the test site and an overview of the test site layout. The wind turbine used in the measurement 

campaign is Vestas V52 with a rated power of 850 kW, rotor diameter of 52 m and a hub-height 

of 44 m. It is equipped with strain gauge systems to measure structural loads on the blades, 

rotor and tower. The calibration and validation of the load measurement system on V52 can 

be found in Poulsen et al. (2018) and Rinker et al. (2018). The load channel of interest for this 

study is the flap-wise bending moment and the power output used in this forecasting analysis 

is extracted from the SCADA system of the turbine. The meteorological mast (met-mast) 

located at the site is approximately 120 m (2.3 D) west-northwest of the wind turbine, which is 

also the prevailing wind direction at the site.  



D3.1 Toolbox of multi-source data approaches to short-term RES forecasting 

 

 

42 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

 

Figure 22: Risø test site, including the location of the Vestas V52 turbine and the met-mast. 

The lidars measurements utilised in this study come from nacelle-mounted 2-beamed and a 4-

beamed lidars, both manufactured by Windar Photonics A/S. A major advantage of nacelle-

mounted lidars is the independence of wind direction as the lidar is fixed on the nacelle and 

therefore always aligns with yaw position. This gives a much higher availability compared to 

wind speeds measured with a meteorological mast where only a limited wind section provides 

coherent wind conditions. The 2-beamed lidar measures at a focus distance of 37 m which 

results in a measuring plane located 32 m (0.6 D) ahead of the wind turbine rotor. The 4-

beamed lidar measures at a focus distance of 62 m resulting in a measuring plane located 59 

m (1.1 D) ahead of the rotor. The sampling rate of both lidar systems is 1Hz. The lidars measure 

only the radial wind speeds along each beam, also called the line-of-sight (LOS) wind speed. 

However, in many applications it is more useful to express the rotor averaged (also referred as 

rotor effective) wind speed 𝑈𝑒𝑓𝑓, which can be estimated as the horizontal wind speed 

component averaged across the number of beams as: 

𝑈𝑒𝑓𝑓 =
1

𝐵
∑

𝑉𝐿𝑂𝑆,𝑖

𝑐𝑜𝑠𝛼𝑖

𝐵

𝑖=1

 

where 𝐵 is the number of beams, 𝛼 is the 

horizontal/axial projection angle of the beam 𝑖 and 

𝑉𝐿𝑂𝑆,𝑖 refers to the LOS wind speed for beam 𝑖. 

Configurations of the lidars beams for the installed 

setup is illustrated in Figure 23.  

The time it takes for the lidar measured plane in front 

of the nacelle to reach the turbine is considered as the 

largest forecast horizon in this analysis. Also referred as 

time delay, it reaches approximately to 40 s for the 

met-mast (valid only for the aligned wind directions, measuring at 120 m in front), 20 s for the 4-

beamed lidar (measuring at 59 m in front) and 10 s (measuring at 32 m in front) for the lowest 

wind speeds. An example time series of the considered channels from the SCADA, strain gauge 

and lidar systems is presented in Figure 24. 

 

Figure 23: Configurations of the LiDAR 

beams. Blue is the 4-beamed LiDAR and red 

is the 2-beamed LiDAR. 
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Figure 24: Example of a 50 Hz time series of power from SCADA, flap-wise bending moment from strain gauge 

measurements and LOS wind speeds from the 2- and 4-beamed LiDAR systems. 

6.3.2  Data acquisition, processing and feature selection 

 The data acquisition flow collects information from three measurement systems (SCADA, strain 

gauge and lidar systems), which are synchronized to match the high sampling frequency of 50 

Hz that is used for the strain gauge system. The 50 Hz synchronized data is then stored together 

with basic 10-min statistics containing mean, minimum, maximum, and standard deviations. 

The next step in the process is to apply a base filter using queries on the 10-min statistics. The 

purpose of this filter is to ensure adequate inflow direction and normal operation of the turbine. 

In terms of power forecasting, it does not make sense to include data where the turbine is not 

operational therefore these data are not included. To ensure only operational status of the 

turbine, 10-min queries based on rotational speed and pitch are introduced. Additionally, only 

the wind direction sectors with relatively low turbulence levels are included to avoid gusts and 

additional noise during the initial training and evaluation of the machine learning based ultra-

short term forecasters. 

For the features to be included into the lidar based power and load forecasting algorithm, a 

data-driven correlation analysis is performed between the target values and the available 

signals. However, one of the drawbacks of using data-driven feature selection is the 

multicollinearity, which is very difficult to avoid in many observational experiments as the 

channels are typically somewhat correlated by nature, e.g., we expect the LOS wind speeds 

to be naturally correlated as they measure the same local wind. The final feature selection was 

based on a trial-and-error process where different combinations of features were used and the 

performance was compared. The features that were ultimately found to be performing best, 

and therefore used in the forecasts, are summarized in  Table 7. 
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𝑉𝐿𝑂𝑆 all individual LOS wind speeds 

𝑈 horizontal wind speed, scalar 

𝜑 yaw misalignment of the turbine to the incoming wind 

𝜎𝑈
60𝑠 moving standard deviation of horizontal wind speed based on a 60 s window 

𝛽 wind shear exponent (only available for the 4-beamed LiDAR) 

Table 7: Final input features to the power and load forecaster. 

After the final features are selected, the modelling can be initialised. The first step is to divide 

the dataset into a training and a test set. Following common practices in data analytics, the 

training/test split was chosen to be an 80% - 20% of the processed database and the splitting 

was done using random selection which is possible after the sequential transformation has 

been performed. This ensures equivalent characteristics of the training and test sets which is 

critical in terms of creating a generic and representative model. After splitting the data, it was 

scaled to the values between -1 and 1. Practically, the scaler is fitted to the training data only, 

and then both training and test sets are normalised with the scaler. It is important that the 

scaling is done after splitting the data into training and test sets. This is done to prevent 

information about the test set, leaking into the model, thereby creating a biased model.      

6.4 Forecast models  

For the ultra-short term power and load forecasting using lidar measurements at the DTU Risø 

test site, 4 different machine learning approaches have been utilised. All the models have the 

power and flap-wise bending moment as the target features, with the same input features 

listed in  Table 7. Note that only the 4-beam lidar based forecasters utilise the wind shear 

exponent, 𝛽, as the input feature. As mentioned earlier, with the 2-beam lidar inputs the 

forecast horizon is 10 s with 1 Hz resolution (i.e. 10-steps ahead), where for the 4-beam lidar 

forecasts reach up 20 s with 0.5 Hz resolution (i.e. 40-steps ahead). 

6.4.1  Feed-forward neural network (FFNN) 

There exist several classes of neural networks that process the flow of information through the 

network differently. The simplest type that is employed within the data-driven forecasting 

literature is the feedforward neural network (FFNN) which passes information straight through 

the network without any loops, i.e., it has no concept of memory. In order to address that in a 

practical manner, the history of the input features is also introduced to the model with lag = 10 

s. However, FFNN has structural limitations in identifying the time dependence between these 

historical inputs and considers them as independent inputs to the network. Using TensorFlow 

library for the training, grid search for hyperparameter tuning is performed and the final FFNN 

architecture has 2 hidden layers with 50 neurons each. 

6.4.2  Long-short-term memory (LSTM) network 

LSTM is a type of recurrent neural networks which is frequently used in sequential and temporal 

predictive modelling, including forecasting. Due to their `memory´ feature via updating the 

cell state within the neurons, LSTM networks have the capability to include temporal 

dependencies. However, they are highly parameterized, requiring large amounts of data for 

robust training and accurate predictions. After sequential transformation of the input features, 
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the grid search for the hyperparameter tuning of the LSTM architecture suggested 2 hidden 

layers with 50 neurons. 

6.4.3  Gated Recurrent Unit (GRU) 

Another type of recurrent neural networks, GRUs are very similar to LSTMs in the sense of the 

memory capabilities through the update of the cell state. However, GRUs control the 

information flow within the past and future states with less parameterization attributed to the 

“gates” of a neuron. That corresponds to an equivalent performance with a relatively 

lightweight model hence faster training and relatively less data requirements. Same 

architecture with 2 hidden layers and 50 neurons each is utilised in this analysis for the GRU 

forecasters. 

6.4.4  Random Forest (RF) 

RFs are ensemble learning algorithms that generate a subset of features based on the trends 

captured in the randomly bootstrapped data (decision trees). It is typically used with tabular 

and/or categorical data, hence not commonly used in forecasting with high temporal 

correlation. However, for the ultra-short term forecasting problem defined here where the 

inflow features are measured ahead of time with lidars, RFs are a suitable choice for wind speed 

to power or loads conversion (a.k.a. tabular data). They have much less hyperparameters to 

tune, and the final configuration used for this task are summarised in Table 8. 

 

 

 

 

6.5 Evaluation of the Results & Discussion 

As it is still the most commonly used and considered to be the baseline for ultra-short term 

forecasting, the persistence model is also included in all the results presented in this section. 

The discussions therefore focus on the improvements based on persistence and elaborate on 

the behaviour of the best performing model. For the evaluation of the forecasts, the RMSE 

improvement metric is used as indicated in the KPI index 1.2.a in Annex A (i.e., up to 30min wind 

forecasts: 7-9% RMSE).  

Figure 25 shows the power forecasting performance of the benchmarked models using 2-

beam and 4-beam lidar configurations. For the 2-beam, it is seen that the performances of all 

four data-driven forecasters are equivalent both in terms of the mean absolute error (MAE) and 

the RMSE, where the baseline persistence is surpassed around 4-s ahead. For the 4-beam, with 

more information available for the models to train on, the difference in their behaviour is more 

notable. For the implemented architectures described in Section 6.4, FFNN has the highest 

RMSE (up to 9% for the longest horizon at 20s); LSTM and GRU has very comparable 

performance with up to 8% RMSE; and RF is the best performer with less than 7% RMSE at 20s 

forecasts. All the models surpass persistence forecasts as early as 2-s ahead, and the best 

performer RF forecaster shows up to 4% decrease in RMSE at 20s in comparison. Although a 

simpler configuration compared to deep learning architectures, RF has the right capabilities to 

Parameter 2-beam 4-beam 

Number of estimators 300 40 

Min samples leaf 3 1 

Min samples split 6 2 

Table 8: RF hyperparameters. 



D3.1 Toolbox of multi-source data approaches to short-term RES forecasting 

 

 

46 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

capture the conversion of wind speed to power, where the former is known/measured ahead 

of time with the forward looking lidars. In other words, the benchmark indicates the forecasting 

problem defined in this task is driven by the ahead of time/space lidar measurements, instead 

of past observations of the turbine response as seen in conventional forecasting setups.  

 

 

Figure 25: Power forecast benchmark, evaluated on mean absolute error (MAE) and normalised root mean square 

error (RMSE) using; i) left: 2-beam lidar, ii) right: 4-beam lidar. 

Figure 26 presents the performance of the models for their second target value, flapwise 

bending moment structural load measured at V52 turbine. Due to the cyclic character of the 

measurements (passing through the tower), the persistence baseline is askew. However, 

especially for 4-beam lidar configuration, the models produce robust and high-accuracy 

forecasts, with RF as the best performer (app. 6% RMSE at 20s). This is particularly useful since, 

once trained, the model forecasts can be used as virtual sensors to estimate the load channels 

where the measurements are not available. An example 20min time series for the 5-s ahead RF 

flapwise bending moment forecasts presented in Figure 27, which shows how the involved 

dynamics are captured and further supports the virtual sensor application. 

Further details on the model training, as well as extended discussion of the results are a part of 

a manuscript under preparation to be submitted to Wind Energy Science journal. 



D3.1 Toolbox of multi-source data approaches to short-term RES forecasting 

 

 

47 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

 

Figure 26: Structural load forecast benchmark, evaluated on mean absolute error (MAE) and normalised root 

mean square error (RMSE) using; i) left: 2-beam lidar, ii) right: 4-beam lidar. 

 

Figure 27: 20min time series comparison of 5-s ahead RF flapwise bending moment forecasts. 
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7 PossPOW SCADA based forecasting (DTU) 

7.1 Motivation 

Minute-scale forecasting is prone to operational uncertainties (including availability, down-

regulation, etc.) and local atmospheric conditions (including wake effects). Therefore, 

updated, dynamic forecasts can be very useful for day-to-day operations and optimum 

control of wind farms. Here in this task, the aim is to investigate the capabilities of the modern 

AI-based forecasting approaches for such dynamic forecasts, as well as to demonstrate the 

value of the additional SCADA channels that are not conventionally used in forecasting 

solutions. Moreover, dynamic models that are continuously updated over time to capture the 

trends in the most recent observations are implemented and compared with single generic 

network approach as well as the persistence baseline. 

7.2 Case studies 

7.2.1  La Haute Borne onshore wind farm 

For the SCADA based ultra-short term forecasting in this task, the open dataset from La Haute 

Borne wind farm3 operated by ENGIE is utilized. It consists of four Repower MM82 turbines with 

2MW rated power and 85 m diameter. Within the dataset, approximately 5-years time series of 

several SCADA channels in their 10-min statistics (minimum, maximum, average and standard 

deviation) are recorded. Figure 28 shows the layout of the wind farm and the observed wind 

rose during the available period. 

The available sampling rate of the dataset also defines the forecast horizon as 10-min for the 

investigation in this task.  

 

Figure 28: La Haute Borne, i) left: Wind rose, ii) right: wind farm layout with turbine IDs. 

                                                 
3 https://opendata-renewables.engie.com/ 
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7.2.2  Description of Data, Processing & Model Training 

From the SCADA available, 10-min mean and standard deviation of the channels wind 

direction, wind speed, pitch, rotational speed and power per turbine are used as input 

features, together with the month of the year, day of the month and the hour of the day, to 

the GRU networks described in Section 6.4.3. All the inputs are processed as sequences for the 

GRUs, where the last 2-hours are used to predict the 10-min ahead mean power production of 

the individual turbines. Accordingly, the network(s) have 43 input and 4 target features in total.  

Within the available period, the first 4-years is used for training the single (generic) network, 

where the last year is reserved for testing its performance. As the second approach, during this 

last year, the single network is updated continuously (i.e., at every 10-min step) to generate the 

dynamic GRU forecaster. 

As a standard practice to avoid misinterpretation of the weights and biases during training, the 

input and target features are normalized by removing the mean and scaling to unit variance. 

Given the length and variety within the dataset, relatively deeper GRU networks with 3 hidden 

layers are configured. The grid search for the hyperparameter tuning performed for 32 – 512 

neurons per hidden layer as well as relu, tanh or sigmoid activation functions in between 

resulted in the optimum configuration presented in Table 9. Within TensorFlow, the Glorot 

uniform initializer is chosen for the kernels and the initial biases are assigned as zeros. 

Layer # of neurons # of parameters 

GRU_1 (frozen layer) 64 14976 

GRU_2 (frozen layer) 320 370560 

GRU_3 (dynamically 

updated via TL) 

32 33984 

Dense_1 (dynamically 

updated via TL) 

4 132 

Total parameters: 419 652 

Trainable parameters - Single Network: 491 652, Transfer Learning (TL): 34 116 

Non-trainable parameters - Single Network:  0, Transfer Learning: 385 536 

Table 9: Architecture of the Single (generic) GRU network with lag = 2-hours. Hidden layers: GRU_1, GRU_2, 

GRU_3. Output Layer: Dense_1. The activation functions used are relu, sigmoid and tanh, respectively. 

For the dynamic updates in the GRU network, the parameters of the first two layers (GRU_1 and 

GRU_2) is ‘frozen’ where only the parameters in the last hidden layer, GRU_3, as well as the 

output layer, Dense_1, are re-trained. As seen in Table 9, this transfer learning approach 

significantly reduces the number of trainable parameters, enabling fast updates in the network 

providing fine-tuned, dynamic forecasts. 

7.3 Evaluation of the Results and Discussion 

With persistence as the baseline, for the evaluation of the forecasts generated by both the 

single and dynamically updated networks, primarily the relative RMSE improvement metric 

used as indicated in the KPI index 1.2a in Annex A (i.e., up to 30 min ahead wind forecasts: 7-

9% RMSE). However, as this task is focused on the dynamic operation of the wind farms, 

including off-performance conditions, the percentage error of the forecasts is also discussed in 
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detail. As under or over-prediction of power has a different value e.g., in terms of market 

scenarios (positive or negative direction in the estimation of the reserves), percentage error, as 

defined below, is a crucial indicator for the forecasting problem defined in this task. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 [%] =  

𝑃𝑜𝑤𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑃𝑜𝑤𝑒𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑃𝑜𝑤𝑒𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
∙ 100 

Accordingly, the distribution of the percentage error for both of the GRU networks, as well as 

the persistence baseline is presented and discussed in the rest of the section. The forecasts 

cover the last year of the available period, starting at the time stamp 2017-01-16, 13:00. 

7.3.1  Single (Generic) GRU Network 

Evaluation with respect to the KPI 1.2.a yields 5% RMSE in 10-min wind farm power forecasts for 

both the persistence baseline and the single (generic) GRU network. However, the percentage 

error distributions presented in Figure 29 for both approaches show significant bias for the 

persistence towards over-estimation. The generic GRU network on the other hand has less than 

2% mean percentage error towards under-estimation with a narrower distribution (4% less 

standard deviation of the percentage error), indicating lower forecast uncertainties. 

 

Figure 29: 10-min ahead La Haute Borne wind farm power forecast performance in percentage error and RMSE, 

i) left: persistence forecasts, ii) right: single (generic) GRU network forecasts. 

7.3.2  Dynamic GRU Networks (via Transfer Learning) 

Similar to the generic networks and the baseline persistence, the forecasts are evaluated in 

terms of the RMSE as well as the percentage error distributions. The corresponding performance 

of the continuously updated GRU networks via transfer learning is presented in Figure 31. 

Compared to Figure 29, Figure 31 shows significant increase in forecast performance via 

dynamic GRU networks, with more than 2% improvement in RMSE. Additionally, the bias 

observed in the forecasts (median of the percentage error, as the distribution is not Gaussian) 

is less than 1% with more than 2% reduction in uncertainty compared to the single generic 

network and more than 6% compared to the persistence baseline.  
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Figure 30: 10-min ahead La Haute Borne wind farm power forecast performance in percentage error and RMSE, 

dynamically updated GRU networks (via transfer learning). 
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8 Satellite-based PV forecasting (ICCS) 

8.1 Motivation 

ICCS investigated the application of satellite images to short-term solar power forecasting as a 

new input data source, specifically to an island where satellite images do not contain 

information above the sea. The experiments were performed on Rhodes case study. The total 

solar power capacity of the island is 18.2 MW and the solar power data cover the period from 

01/01/2018 to 31/12/2019. In specific, the 5-hour ahead solar power forecasting of Rhodes’s 

total production that is essential for the economic and secure management of an isolated 

power system, was performed. In order to evaluate the influence of satellite images to the 

forecasting performance, ICCS has developed a deep neural network that can handle inputs 

from different data sources. The data sources used to that investigation are the aggregated 

solar power production timeseries, ECMWF NWPs and solar irradiance maps from HelioClim-3 

solar radiation database (Albarelo et al., 2015, https://www.soda-pro.com). 

The solar irradiance maps are extracted by the Heliosat-2 model (Albarelo et al., 2015). The 

Heliosat-2 model processes the images derived by Meteosat Second Generation satellite 

during a day (72 images) and computes the 15-minute Global Irradiance values over a 

horizontal plane (GHI). More details about the characteristics of the satellite images database 

can be found in Blanc et al. (2011) and Vernay et al. (2013). The solar irradiance maps applied 

here cover the whole Europe area in 5 km spatial resolution, but contain information only 

above the land. Images for every 15 minutes have been used for the period of the years 2018 

and 2019. In Figure 31, solar irradiance maps corresponding to 9 different hours picked 

randomly from the dataset are illustrated. The figures show that all the values above the sea 

are missed (blank colour). The values above the small islands are also missed. The only 

neighbour areas of Rhodes that have available information are the islands of Crete, of Naxos 

and of Samos. 

 

Figure 31: Solar irradiance map of Greece in Wh/m². There is no information above the sea and above small 

islands. 
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8.2 Approach 

As mentioned before, the solar irradiance maps’ dataset has 15-minute timestep. For 

balancing the dataset with the NWP dataset and the solar power timeseries that are in hourly 

resolution, only the images corresponding to full hours are kept. Furthermore, in order to remove 

the influence of the solar position to irradiance maps, each pixel is normalized by the daily 

maximum value of the clear-sky irradiance. The clear-sky irradiance depends on the solar 

position and represents the irradiance if the sky was clear.      

Figure 31 also shows that there are large areas where the pixel information is highly correlated. 

In order to reduce the data size and the number of forecasting model parameters, it is 

necessary to select only the pixels that provide the most useful information (Agoua et al., 2021).  

To do that, firstly, the map pixels are grouped depending on the correlation between the 

irradiance timeseries It,I,j provided by the pixel (i, j) at time t and the solar power timeseries pt+h 

recorded at time t+h, where h is the forecasting horizon in hours, namely between 1..5. 

Computing the correlation between each pixel of the image It,I,j and the solar power pt+h, a 

correlation map for each forecasting horizon h is created. Then, the local maxima of each 

correlation map are estimated and the pixels are grouped based on the nearest maxima 

location. As shown in Figure 32, the irradiance maps that correspond to the current hour present 

positive correlation with the solar power timeseries for 3 hour-ahead, while for the rest 

forecasting horizon have negative correlation and instead of local maxima, the local minima 

are computed. 

 

 

Figure 32: The correlation maps for 1, 2, 3 and 5 hour-ahead horizons with the respective maxima. 

After grouping the image pixels, a feature selection method is applied for indicating the pixels 

with the adequate information. In this work, two different feature selection methods are tested 

– the random forest variable importance (RF) (Breiman, 2001) and the group lasso method 

(Yuan & Lin, 2001). 
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 Random forest variable importance 

In random forest, each tree has its own out-of-bag sample of data that was not used during 

construction. This sample is used to calculate importance of a specific variable. First, the 

prediction accuracy on the out-of-bag sample is measured. Then, the values of the variable in 

the out-of-bag-sample are randomly shuffled, keeping all other variables the same. Finally, the 

decrease in prediction accuracy on the shuffled data is measured. The mean decrease in 

accuracy across all trees is reported. Intuitively, the random shuffling means that, on average, 

the shuffled variable has no predictive power. This importance is a measure of by how much 

removing a variable decreases accuracy, and vice versa. 

 Group lasso method 

The group lasso method is an extension of the Lasso (least absolute shrinkage and selection 

operator) linear regression method that utilizes the L1 regularization, namely an additional 

parameter in cost function penalizing the large weights. Lasso performs both variable selection 

and regularization. Group lasso uses predefined groups of input variables to jointly be selected 

into or out of a model. The objective function of the group lasso method has the following form 

𝑚𝑖𝑛𝛽∈ℝ𝑝 {‖𝑦 − ∑ 𝑋𝑗𝛽𝑗

𝐽
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where the inputs X and covariate vector β have been replaced by a collection of X_j and 

covariate vectors β_j, for each of the J groups. Additionally, the penalty term is defined by the 

matrices K_j. If each covariate is in its own group and K_j is an identity matrix, then this reduces 

to the standard lasso, while if there is only a single group and K_1=I, it reduces to ridge 

regression. At the case of standard lasso, the penalty is piecewise linear, and this gives rise to 

the piecewise linear solution path. Intuitively, in the group lasso case, the penalty is no longer 

piecewise linear. 

Since the most valuable features are selected, they are placed on a two-dimensional matrix 

based on their location of the original irradiance maps. Specifically, in order not to lose the 

spatial interactions of the irradiance maps, the pixel with the higher latitude and the lower 

longitude is first placed on the (0, 0) matrix position and then the neighbour matrix positions are 

filled with the pixels that have the lowest spatial distance. That procedure is repeated until all 

the pixels selected by the feature selection method are placed on the matrix. 

The pixel selection and their organization to a two-dimensional matrix are performed for each 

forecasting step, resulting a four-dimensional tensor with size NxTxMxM. Where N is the number 

of data samples in the training set, T is the forecasting horizon and MxM is the size of the two-

dimensional matrix mentioned above. Actually, M is the maximum of {M1, M2 … M5} that are 

the sizes of the matrices constructed at each forecasting step. All the T matrices are resized to 

MxM with interpolation. The four-dimensional tensor created is inputted to a deep learning 

model that consists of one LSTM-Conv and three fully-connected layers.  The LSTM-CNN layer is 

the combination of a long-short memory recurrent layer (LSTM) and T convolutional layers 

(Conv). Each Conv layer handles one of the T MxM matrices and their outputs are 

concatenated to feed the LSTM layer.  

A convolutional layer processes the data that have a grid-like topology, such as an image. 

Typically, a Conv layer has two layers: a convolutional layer and a pooling layer. This layer 

performs a dot product between two matrices, where one matrix is the set of learnable 

parameters, known as kernel and the other matrix is the restricted portion of the image. So, the 
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kernel is spatially much smaller than the input image. During the convolution, the kernel slides 

across the height and width of the image, producing an image representation of that 

receptive region. This produces a two-dimensional representation of the image known as an 

activation map that gives the response of the kernel at each spatial position of the image. The 

pooling layer replaces the output of the Conv layer at certain locations by deriving a summary 

statistic of the nearby outputs. This helps in reducing the spatial size of the representation, which 

decreases the required amount of computation and weights. The pooling operation is 

processed on every slice of the representation individually. 

On the other hand, LSTM networks were designed specifically to overcome the long-term 

dependency problem faced by recurrent neural networks RNNs (due to the vanishing gradient 

problem). LSTMs have feedback connections which make them different to more traditional 

feedforward neural networks. This property enables LSTMs to process entire sequences of data 

(e.g. time series) without treating each point in the sequence independently, but rather, 

retaining useful information about previous data in the sequence to help with the processing 

of new data points. As a result, LSTMs are particularly good at processing time-series. 

Combining Conv and LSTM layers, the proposed model is able to account for the solar power 

sequential dependencies in time and the dependencies distributed spatially to the satellite 

images or to the numerical weather prediction grids. 

Figure 35 shows the structure of the proposed model, while Figure 33 and Figure 34 illustrate the 

benchmark models used for this study. Firstly, the benchmark model of Figure 33, called here 

as TS, is a multilayer perceptron neural network that receives only data from the solar power 

timeseries. It has two branches of fully-connected layers that are connected to the output 

layer, one for calendar data and one for past measurements. The second benchmark model, 

called here as TS-NWP, has a third branch of layers that consists of a LSTM-Conv layer and two 

fully-connected layers that process the NWP data. The NWP data are formed to a NxTx10x10x4 

matrix, where N is the number of training set, T is the forecasting horizon, 4 is the number of the 

weather variables (cloud coverage, downward short-wave flux, temperature and wind speed) 

and 10x10 is the frame of NWP grid that surrounds the island of Rhodes. Finally, the proposed 

model shown in Figure 35 and called here as TS-NWP-SAT, has an additional layer branch similar 

with the layer branch that processes the NWP data. This layer branch receives as input the four-

dimensional tensor with size NxTxMxM that contains the selected irradiance map pixels as 

described above. 
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Figure 33: The structure of the model that uses only timeseries data and it is used as benchmark. 

 

Figure 34: The structure of the model that uses timeseries data and NWPs and it is used as second benchmark. 
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Figure 35: The structure of the proposed model that uses timeseries data, NWPs and irradiance maps. 

 

8.3 Case studies 

The forecasting models described above are tested on an isolated power system case study: 

the total solar power production of Rhodes Island. Together with those forecasting models, 

three prediction methods together with deep learning architectures described above are 

evaluated. In specific, for each variable selection method, a simple linear regression, the Lasso 

regression method and the random forest method are applied using the datasets of the three 

trials. At each trial, the corresponding deep learning architecture dl1 for the first trial, dl2 for the 

second and dl3 for the third trial are also evaluated.  

• At the first trial, the 5-hour ahead prediction is performed using only timeseries data 

(solar power, solar position and calendar data. The deep learning architecture 

dl1evaluated here. 

• At the second trial, NWP data is added to the first trial’s dataset. The deep learning 

architecture dl2evaluated here. 

• At the third trial, the dataset consists of irradiance data, NWP data and timeseries data. . 

The deep learning architecture dl3 evaluated here. 

The Rhodes total solar power production timeseries has hourly timestep and cover the period 

from 01/01/2018 to 31/12/2019. The total PV capacity of the island is 18.2 MW. The data used 

for training the models comes from the period from 01/01/2018 to 31/08/2019, while the testing 

period starts at 01/09/2019 and ends at 31/12/2019. In this case, the ECMWF NWPs are used, 

while irradiance maps from SODA covering the area with latitude from 34° to 42° and longitude 

from 19° to 31° are also used. The irradiance maps covering that area consist of 121x193 pixels. 
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8.4 Evaluation 

As mentioned before, three trials with different datasets are performed in order to prove the 

effectiveness of satellite images use on short-term solar power forecasting. The data used on 

the first trial consists of timeseries data, during the second trial timeseries data and NWP data 

were used and both timeseries data, NWP data and irradiance map data were applied at the 

third trial. In specific, the included timeseries data are: power measurements of the past three 

hours, the prediction hour and month and the solar zenith and azimuth. NWPs for each of the 

five prediction hours are used and the most informative pixels from the irradiance map of the 

last hour are selected for each forecasting step by the applied feature selection method. 

8.5 Results and Discussion 

1.    Using timeseries data 

Four regression methods were implemented on the timeseries data and the results will be used 

as a benchmark to evaluate the improvement obtained by the use of irradiance maps. In order 

to make the comparison fair, only the predictions of daylight hours are considered to the 

evaluation. Table 10 contains the normalized mean absolute error (NMAE) of the Linear 

regression (lr), of the Lasso regression (lasso), of the random forests (RF) and of the deep 

learning architecture shown in Figure 33 (dl1) obtained on the Rhodes case-study. 

 

Table 10: NMAE from the Rhodes case-study using timeseries data.  

The best performance was obtained by the RF method, where the NMAE average over the 

prediction horizons (1h to 5h ahead) was 5.87% for the Rhodes. 

2.    Using timeseries and NWP data 

Utilizing the same prediction methods with both timeseries and NWP data, but instead of dl1, 

here the deep learning architecture of Figure 34 (dl2) is applied. The results are presented in 

Table 11. 

 

Table 11: NMAE from the Rhodes case-study using timeseries and NWP data.  

At the Rhodes case-study, the averaged RF NMAE was 4.29% with the NWP data use and the 

improvement w.r.t the RF performance with only timeseries data was 27%. The deep learning 

architecture dl2 provided averaged NMAE 5.01% during the second trial, while at the first trial 

the averaged NMAE of dl1 was 7.99%.  

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead

lr 6.21% 10.67% 12.42% 13.23% 13.75%

lasso 6.25% 10.69% 12.46% 13.26% 13.76%

RF 3.54% 5.60% 6.62% 6.90% 6.73%

dl1 4.67% 7.03% 8.93% 9.66% 9.68%

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead

lr 4.57% 5.93% 6.03% 5.88% 5.70%

lasso 4.60% 6.30% 6.40% 6.28% 5.73%

RF 3.55% 4.54% 4.74% 4.47% 4.14%

dl2 3.92% 5.26% 5.56% 5.37% 4.94%
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3.    Using timeseries data, NWP data and irradiance maps 

Finally, collecting the timeseries data, the NWP data and the irradiance maps to one dataset, 

the dl3 model of Figure 35 and the three benchmark methods lr, lasso and RF were evaluated 

for each of the two-pixel selection methods, namely the random forest variable importance 

index (RFVII) and the group Lasso method (gLasso). Firstly, considering Rhodes case study, the 

results for each pixel selection method are presented in the following two tables. 

 

Table 12: NMAE from the Rhodes case-study obtained using all data and the irradiance map pixels are selected 

by RFVII. 

 

Table 13: NMAE from the Rhodes case-study obtained using all data and the irradiance map pixels are selected 

by gLasso. 

The best results at the Rhodes case study were obtained by the RFVII method. In specific, the 

RF method provided averaged NMAE 4.24% when the image pixels were selected by RFVII 

method. The dl3 model working with RFVII method gave averaged NMAE 4.61%. 

Comparing the results obtained with the RF with those without the use of an irradiance map, 

there is significant improvement at the 1 hour-ahead and 2 hour-ahead predictions (see Table 

14). While the deep learning architecture dl3 generally performs not as good as the RF, the 

improvement using the irradiance map is on average 8%, except for the 1-h ahead predictions 

(see Table 15). Figure 36 shows the RF performance for every trial and for different horizons. 

Also, Figure 37 compares lasso, RF, and dl3 performance when they combined with RFVII pixel 

selection methods. 

 

Table 14: NMAE from the Rhodes case-study obtained by RF method for each trial. 

 

Table 15: NMAE from the Rhodes case-study obtained by the deep learning architectures on each trial. 

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead

lr 4.42% 6.00% 6.16% 6.06% 5.86%

lasso 4.89% 6.47% 6.42% 6.24% 5.69%

RF 3.37% 4.38% 4.71% 4.52% 4.20%

dl3 3.98% 4.74% 5.07% 4.76% 4.51%

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead

lr 13.56% 20.01% 23.28% 23.99% 23.52%

lasso 5.92% 10.17% 11.73% 11.79% 11.64%

RF 4.10% 5.73% 6.85% 7.03% 6.61%

dl3 4.45% 5.88% 6.70% 6.82% 6.49%

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead AVERAGE

RF-TS+NWP+SAT 3.37% 4.38% 4.71% 4.52% 4.20% 4.24%

RF-TS+NWP 3.55% 4.54% 4.74% 4.47% 4.14% 4.29%

RF-TS 3.54% 5.60% 6.62% 6.90% 6.73% 5.88%

1h-ahead 2h-ahead 3h-ahead 4h-ahead 5h-ahead AVERAGE

dl3-TS+NWP+SAT 3.98% 4.74% 5.07% 4.76% 4.51% 4.61%

dl2-TS+NWP 3.92% 5.26% 5.56% 5.37% 4.94% 5.01%

dl1-TS 4.67% 7.03% 8.93% 9.66% 9.68% 7.99%
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Figure 36: Predictions obtained by the RF method and the RFVII pixel selection method for every trial and for 1, 

3 and 5 hour-ahead forecasting horizon. 

 

Figure 37: Predictions obtained by the different forecasting method the RFVII pixel selection method for 1, 3 and 

5 hour-ahead forecasting horizon. 
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9 Day-ahead solar power forecasting using NWPs 

obtained by different vendors 

9.1 Motivation 

ICCS investigates if the performance of a forecasting model can be improved when using as 

input NWPs obtained by two different vendors. Specifically, the accuracy of day-ahead 

predictions of the Rhodes total solar power production is presented here. The total solar power 

capacity of the island is 18.2 MW. The solar power predictions are provided by a state-of-the-

art forecasting model (Sideratos et al., 2020) that uses as input both European Centre for 

Medium-Range Weather Forecasts (ECMWF) and Global Forecasting System (GFS) NWPs that 

have 0.1° and 0.25° spatial resolution, respectively. The ECMWF NWPs come from its HRES 

model, while GFS NWPs have been downloaded by Google datasets4. The forecasting model 

runs once per day and predicts separately the solar power of each hour without considering 

the time dependence of the power data. The above predictions are compared with those 

obtained by the same forecasting model that uses NWPs from one of the two vendors, namely 

ECMWF and GFS. 

In addition, ICCS tests the application of a post-processing model that consists of a 

combination of two deep learning neural components – the long short memory recurrent 

neural layer (LSTM) and the convolutional neural layer (Conv) and performs a fine calibration 

to daily predictions. The post processing model receives the day-ahead solar power 

predictions together with NWPs in order to capture the time dependencies of the timeseries.  

9.2 Approach 

The applied forecasting model called Fuzzy-RBF-CNN consists of three layers: a fuzzy clustering, 

an RBF-CNN regressor and an aggregation layer. At the first layer, a clustering method groups 

the input data into multiple clusters. The fuzzy clustering method forms clusters that have to 

share a portion of their space with their neighbouring clusters in order for every input to be able 

to activate more than one cluster and an ensemble prediction to be created at the second 

layer. Each cluster created corresponds to a fuzzy rule of the fuzzy clustering layer.  

Following the fuzzy clustering method, the inputs are distributed to the second layer where an 

RBF-CNN regressor is applied to each cluster. As shown in Figure 38, an RBF-CNN regressor is an 

innovative neural network architecture composed by three RBF, a convolutional, a pooling 

and two fully connected layers and receives the data subset constructed by the 

corresponding cluster (fuzzy rule) at the first layer. The convolutional layer creates feature 

representations of the RBF kernel activations element-wise utilizing the kernel topology and 

reduces the impact of the non-useful information provided by each kernel. Training of an RBF-

CNN regressor requires that the optimal parameters of the RBF kernels, namely the kernel 

number, centres and widths, are estimated through three different algorithms described in 

Sideratos and Hatziargyriou (2020), Sideratos and Hatziargyriou (2012), Sideratos and 

Hatziargyriou (2007). The optimised RBF kernels transform the input data to a higher dimensional 

space with their activations becoming new data representations. The CNN is trained using the 

transformed input data at a second stage that analyses in more detail than an RBFNN, the 

relations of a kernel element with its neighbours; namely with the elements that correspond to 

a different input variable or kernel. Following the above two stage training procedure, an RBF-

                                                 
4 https://datasetsearch.research.google.com/ 
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CNN regressor operates as a compact neural network that consists of three RBF, a 

convolutional, an averaging pooling and two fully-connected layers. 

The final prediction of the proposed model will be provided at the third layer by averaging the 

ensemble predictions of the RBF-CNN regressors that correspond to the clusters activated in 

the fuzzy clustering layer. Figure 39 shows the proposed model structure, where three clusters 

(darker shade) are activated and contribute to the final load prediction. In this example, input 

xi activates fuzzy rules 2, 3 and 5 and the RBF-CNNs which are connected to these rules provide 

an independent prediction. The final prediction is obtained by averaging these predictions. 

 

Figure 38: The RBF-CNN regressor structure. 

 

Figure 39: The forecasting model architecture (coloured branches signify the activated clusters). 



D3.1 Toolbox of multi-source data approaches to short-term RES forecasting 

 

 

64 This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 864337 

As mentioned before, the forecasting model runs once per day giving the 24-hour day-ahead 

prediction.  In order to improve the forecasting performance, a post processing model is 

applied. The post processing model receives the 24-hour predictions from the above 

forecasting model and the NWPs that cover an area 100x100 km. The NWP data from the two 

vendors are stacked together forming an Nx24x10x10x8 matrix. The last dimension corresponds 

to the NWP variables that are 4 from each vendor (downward short-wave flux, cloud coverage, 

temperature and wind speed).  The proposed model consists of a LSTM-Conv neural network. 

Firstly, 24 Conv layers are applied and each of them receives an Nx10x10x8 matrix that contains 

the NWPs of a different hour. Then, the corresponding hourly prediction together with their 

outputs feed a LSTM layer that provides the final 24-hour prediction. The post processing model 

is illustrated in Figure 40. 

 

Figure 40: Post-processing solar power forecasting model. 

In order to provide a further analysis on the performance of a forecasting model when using 

input NWPs obtained by two different vendors, an additional forecasting model called 

“Ensemble PDE-NN”, proposed by ICCS as well, is tested. This model includes four components, 

as presented in Figure 41, each responsible for a different process: 

Dimensionality Reduction component: This component is based on an Autoencoder 

architecture and is responsible for projecting the high-dimensional input data into a latent 

space of attributes with a lower number of dimensions. Often, input data have a great number 

of features, which makes the clustering process inefficient, due to the fact that the concept of 

distance between different vectors becomes less precise as the number of dimensions grows. 

Therefore, this component is responsible for providing the Clustering layer with the input data 

in a lower dimension, without any redundant information and noise. 

Clustering component: The Clustering component is based on a clustering layer of a neural 

network. This layer is responsible for dividing the input data in a specific number of clusters. 

Each input data is assigned to a cluster based on the minimum distance of the input data 

vector to the centroid vector of each cluster. The centroids of the clusters are randomly 

initialised and in each training iteration, they are altered based on a loss function. The 

replacement of the centroids with a centroids' layer, through a supervised training process, 

gives the flexibility to the clustering process not only to just cluster the data but also choose the 

centroids that give a lower value to the overall loss function. The centroids' layer through the 

back-propagation process is updated based on the overall loss function of the model. 
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Sub-models Component: The Sub-models component consists of a number of neural network-

based sub-models. As shown in, each sub-model acts as a different independent branch of 

the same neural network which produces parametric probabilistic forecasts. The goal of this 

component is to present to each sub-model module the same input vector and for each sub-

model to produce a different output in the form of a probability distribution’s parameters, 

which is scaled by a participation factor calculated by the Meta-learner component. The 

outputs of the Sub-models component are used as the input data for the final estimation in the 

Meta-learner component. 

Meta-learner component: In each iteration of the training process, the Sub-models and the 

Clustering component provide the Meta-Learner with a multi-parameters vector and the 

clustering participation weights of the input vector, respectively. Within the Meta-Learner, there 

is a two-stage process for estimating the final output of the model. In the first stage, the cluster 

participation weights are transformed into sub-models participation weights through a fully-

connected layer. The optimal sub-models' participation weights are calculated through the 

training process and are conditional to the cluster participation weights. The multi-parameter 

vector is element-wise multiplied with the sub-models' participation weights vector. The goal of 

the first stage is to provide the Meta-learner component the information of which sub-models 

should participate and to what degree, in the final estimation process. The second stage of 

the Meta-learner component, uses as input the weighted parameters' vector and using a fully-

connected layer estimates the final forecast. 

 

Figure 41: Ensemble PDE-NN model architecture. 

9.3 Case studies 

The applied forecasting models that provide the initial day-ahead solar power prediction in 

hourly based and the post processing model that provides the day-ahead prediction at once 

are evaluated in Rhodes case-study. The timeseries used contains information for the total solar 

power production of the island and has hourly timestep. The data used for training the models 

is for the period from 01/01/2018 to 31/08/2019, while the testing period starts at 01/09/2019 and 

ends at 31/12/2019.  
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9.4 Results and Discussion 

In Table 16, the normalised mean absolute errors of the forecasting model and of the post 

processing model are illustrated for three cases: The case that only ECMWF NWPs are 

considered, the second case the models use only GFS NWPs and the third case that both 

ECMWF and GFS NWPs are used. 

Model ECMWF GFS ECMWF+GFS 

Fuzzy-RBF-CNN 2.62% 3.12% 2.61% 

Fuzzy-RBF-CNN-LSTMConv 2.55% 2.96% 2.58% 

Ensemble PDE-NN 2.51% 2.85% 2.38% 

Ensemble PDE-NN-LSTMConv 2.48% 2.79% 2.05% 

Table 16: Normalised mean absolute error of day-ahead predictions. 

The results show that the performance of the models is better when they use the ECMWF NWPs. 

Using GFS NWPs, the NMAE is about 20% higher than the other cases. By using NWPs from both 

vendors, the performance of the Fuzzy-RBF-CNN model remains similar to the performance with 

ECMWF NWPs. However, the Ensemble PDE-NN model provides significant improvement when 

uses data from both vendors due to the dimensionality reduction component. Furthermore, for 

both cases the LSTMConv post-processing method is tested. As proved by the results, the 

LSTMConv method has the ability to improve the overall accuracy of a model, but as it 

displayed in Table 16 we can assume that the performance of the post-processing procedure 

might not have the ability to further improve the accuracy in certain conditions. 

To conclude, the application of more than one vendor of NWP to solar power forecasting can 

lead to significant improvement and the proposed post processing model that calibrates the 

day-ahead predictions with their time dependence abilities reduces further the error in all 

cases. 
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10 Conclusion 

In this report we have presented several novel approaches developed in the framework of 

Task 3.1 that use multiple sources of data and improve the skill of RES power forecasts: 

• PV power forecasting using the combined Satellite and AllSkyImager Irradiance 

Forecast (DLR, section 2) → up to 18% RMSE improvement compared to only 

AllskyImager forecast 

• Using Skyimager data to improve the minute ahead PV power forecasting (EMSYS, 

section 3) → up to 23% RMSE improvement compared to operational EMSYS forecast 

• Improving the minute to hour ahead PV forecast during thunderstorms by using lightning 

data and power measurements (EMSYS, section 4) → up to 14% RMSE improvement 

compared to operational EMSYS forecast 

• Obtaining improved power curves through advanced outlier data filtering and 

machine learning techniques (EMSYS, section 0) → up to 8% RMSE improvement 

compared to operational EMSYS forecast 

• LiDAR based second-ahead forecasting of wind power and structural loads (DTU, 

section 6) → up to 35% RMSE improvement compared to persistence forecast 

• Investigating the capabilities of AI-based dynamic forecasting approaches and 

additional SCADA data channels (DTU, section 7) → up to 46% RMSE improvement of 

dynamic GRU networks compared to single GRU networks and persistence 

• Blending satellite irradiance maps with NWP data and power time series to improve 

hour-ahead PV forecasting (ICCS, section 8) → up to 5% MAE improvement compared 

to forecast without satellite irradiance 

• Applying AI techniques and combining two NWPs to improve the day-ahead solar 

power forecasting (ICCS, section 9) → up to 17% MAE improvement compared to single 

NWP forecast 

Most of these approaches integrate new sources of data, that have not been used in the 

context of RES forecasting before, into existing RES forecasting models. It was demonstrated 

that all of these approaches yield a significant improvement of RES power forecasting skill in 

alignment with the Forecasting KPIs of the project (see Appendix A, Section 11.1.1), mostly 

reaching or exceeding the project KPI target values of 9-12% (solar) and 7-9% (wind) RMSE 

improvement for the up to 30-min ahead forecast.  

The approaches contained in this report are validation studies, most of them reaching TRL 4 at 

this stage. In WP6 some of these will be integrated in the complete model chain of RES power 

forecasting and evaluated for a number of test cases defined in WP1 to demonstrate and verify 

the predictability improvement compared to the state of the art in an industrially relevant 

environment (finally reaching TRL 5-6). 

With the approval of this Deliverable, Milestone M3.1 will be achieved: the developed multi-

source data approaches to short-term RES forecasting are ready for testing in WP6. 
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11 Appendix A: Summary of Smart4RES KPIs 

This Appendix summarises the KPIs defined in Smart4RES. These KPIs are divided in 2 groups: 

• Project KPIs defined in the Description of Action 

• Specific KPIs that are needed to evaluate technical results.  

Please refer to Smart4RES Deliverable D.1.1 ‘Use cases, requirements and KPIs for RES 

forecasting’, in particular Section 2.5 for a more detailed description of the different KPIs. 

11.1 Project KPIs 

11.1.1  Forecasting KPIs 
 

KPI 

category 

KPI 

index 

KPI name KPI baseline KPI target 

Weather Forecasting 

Project 

KPI 

1.1.a % absolute improvement 

Weather Forecasting 

score: 

15 to 30 min ahead 

Current operational 

solutions 

(AROME/ECMWF/GFS, 

DLR, EMSYS) 

10-15% RMSE 

Project 

KPI 

1.1.b % absolute improvement 

Weather Forecasting 

score: 

Few hours ahead 

Whiffle forecast driven 

with ECMWF boundary 

conditions and without 

data-assimilation 

10% RMSE 

Project 

KPI 

1.1.c % absolute improvement 

Weather Forecasting 

score: 

From few hours to 96 

hours ahead 

Current operational 

solutions of MeteoFrance 

10% RMSE,  

4-6% CRPS (solar 

radiative)  

5-10% CRPS (wind) 

RES Forecasting 

Project 

KPI 

1.2.a % improvement RES 

Forecasting score: 

Up to 30 min ahead 

Current operational 

solutions of EMSYS, EDP-R, 

errors from public 

datasets. 

 

Conditional evaluation 

on situations with highest 

forecasting errors. 

Solar: 9-12% RMSE, 3-

5% CRPS 

Wind: 7-9% RMSE, 2-

4% CRPS 

Project 

KPI 

1.2.b % improvement RES 

Forecasting score: 

Up to 96 h ahead 

Solar: 16-20% RMSE, 

4-6% CRPS 

Wind: 12-15% RMSE, 

3-5% CRPS 

Specific 

KPI 

1.2.c % improvement 

Variogram score for 

ensemble forecasts 

State-of-the-art methods 

for RES ensemble 

forecasts 

>= 0 

Specific 

KPI 

1.2.d % improvement for 

seamless generic 

forecasts 

Same as KPI 1.2.a, 1.2.b Weighted 

combination of 

targets in KPI 1.2.a, 

1.2.b over lead-times 

and RES sources 
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11.1.2 KPIs on grid management applications 
 

KPI 

category 

KPI 

index 

KPI name KPI baseline KPI target 

Grid management applications 

Project 

KPI 

1.3.a % decrease of load 

shedding events in 

isolated power systems 

Method without T5.2 tool 

and T5.1 storage support 

functions 

>= 80% 

Project 

KPI 

1.3.b % increased RES hosting 

capacity in MV 

distribution grids 

Method without 

predictive management 

of flexibility from T5.3 

>= 50% 

Project 

KPI 

1.3.c Number of years in 

investment deferral in 

grid reinforcement 

Traditional grid 

reinforcement 

> 2 years 

Specific 

KPI 

1.3.e Reduced energy 

curtailment of RES 

Historical time series of 

RES production under 

curtailment conditions, 

without storage and 

innovative forecasting 

product 

No target from the 

state-of-the-art. The 

objective is to 

minimize the KPI 

value 

Specific 

KPI 

1.3.g Fulfillment of voltage 

limits 

Traditional grid 

management without 

grid state optimization 

No target from the 

state-of-the-art. The 

objective is to 

minimize the KPI 

value, computed in 

accordance with EN 

50160 

Specific 

KPI 

1.3.h Fulfilment of branch 

current limits 

No target from the 

state-of-the-art. The 

objective is to 

minimize the KPI 

value 

Specific 

KPI 

1.5.a Demonstration of a 

software-in-the-loop run 

using an example from 

the project 

N.A. Successful 

implementation of at 

least one Smart4RES 

use case as code 

and as a black box 

on a separate 

device 

Specific 

KPI 

1.5.b Simulated environment 

including controls and 

interaction 

N.A. Successful 

interaction with the 

power system for at 

least one Smart4RES 

use case 

Specific 

KPI 

1.5.c Test protocol to test for a 

least one potential risk 

N.A Test of at least one 

potential risk of the 

software solution  
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11.1.3  KPIs on market applications 
 

KPI 

category 

KPI 

index 

KPI name KPI baseline KPI target 

Market applications 

Project 

KPI 

1.3.d % increase in electricity 

market revenue 

Point forecasts and 

optimal quantile 

10-15% decrease in 

costs stemming from 

balancing 

+ 10-15% revenue 

from participation in 

energy plus ancillary 

services 

Up to 20-25% from 

VPP (RES and 

storage) in energy 

and ancillary 

services 

Specific 

KPI 

1.4.b Analytic forecast 

evaluation by traders 

Same as 1.3.d Usual error levels 

observed by traders 

in similar conditions 

that chosen 

evaluation set 
Specific 

KPI 

1.4.c ‘No-big-change’ forecast 

evaluation by traders 

Specific 

KPI 

1.3.f Revenue losses per 

production unit due to 

curtailment 

Historical time series of 

RES production under 

curtailment conditions, 

without innovative 

forecasting product 

No target from the 

state-of-the-art. The 

objective is to 

minimize the KPI 

value 
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