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Highlights

• We study the effect of aggregation at a co-located wind and solar power
park.

• We assess the performance of probabilistic forecasts in terms of quality
and value.

• Co-location improves the accuracy of forecasts the most in the spring,
summer and fall.

• A ratio of 50 % - 60 % wind power in the combined park improves the
accuracy the most.

• The improved forecasts reduce the regulation costs in the day-ahead mar-
ket.
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Abstract

This paper presents a first step in the field of probabilistic forecasting of co-located wind and photovoltaic

(PV) parks. The effect of aggregation is analyzed with respect to forecast accuracy and value at a co-located

park in Sweden using roughly three years of data. We use a fixed modelling framework where we post-process

numerical weather predictions to calibrated probabilistic production forecasts, which is a prerequisite when

placing optimal bids in the day-ahead market. The results show that aggregation improves forecast accuracy

in terms of continuous ranked probability score, interval score and quantile score when compared to wind

or PV power forecasts alone. The optimal aggregation ratio is found to be 50%–60% wind power and the

remainder PV power. This is explained by the aggregated time series being smoother, which improves the

calibration and produces sharper predictive distributions, especially during periods of high variability in both

resources, i.e., most prominently in the summer, spring and fall. Furthermore, the daily variability of wind

and PV power generation was found to be anti-correlated which proved to be beneficial when forecasting

the aggregated time series. Finally, we show that probabilistic forecasts of co-located production improve

trading in the day-ahead market, where the more accurate and sharper forecasts reduce balancing costs. In

conclusion, the study indicates that co-locating wind and PV power parks can improve probabilistic forecasts

which, furthermore, carry over to electricity market trading. The results from the study should be generally

applicable to other co-located parks in similar climates.

Keywords: Forecast value, Quantile forecasts, PV power, Wind power, Hybrid power park, Probabilistic

forecasting

1. Introduction

The power output of wind and solar photovoltaic (PV) power is intermittent and non-dispatchable,

hence accurate forecasts are crucial for balancing purposes and providing technical support when trading
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[1]. Conventional forecasts, which give the expected generation output as a single value at each lead time,

are referred to as deterministic forecasts. However, every lead time has an inherent and irreducible uncer-

tainty which is why forecasted uncertainty information at these time steps, often referred to as probabilistic

forecasts, have gained attention in renewable energy forecasting over the last years [1, 2]. Short-term fore-

casts, having a lead time from a few hours to a few days ahead, are used for day-ahead market trading

where electricity generated from wind and solar are exchanged [1]. Such forecasts are typically produced

by numerical weather predition (NWP) models in a first step and post-processed using statistical models

in order to reduce forecast errors in a second step. Although more commonly used when forecasting wind

power [1], using NWP forecasts to improve the accuracy of day-ahead PV and solar irradiance forecasts

have become increasingly popular [3].

The variability in wind and PV power production can be reduced through spatial dispersion of the

systems, commonly known as the the smoothing effect [4]. For example, Katzenstein et al. [5] studied 20

interconnected wind power parks across Texas and found that the reduction in variability occurred on time

scales shorter than 24 hours. In Lave et al. [6], the aggregation of six irradiance measurement stations within

3 kilometers in San Diego was studied. The authors found that ramp rates became uncorrelated on time

scales below 5 minutes which reduced the aggregated variability. In both cases, the smoothing occurs due to

averaging independent variations in the signals. However, if the correlation is close to zero or even negative,

which is often the case for wind and PV power [7], the smoothing effect can be achieved without physically

separating the systems. This motivates co-locating wind and PV parks to mitigate the average variability

in the combined output.

A co-located park is owned by a single power producer where the power sources share a common inter-

connection point to the electricity grid. This means that a co-located park is considered as a single power

generating facility according to the network codes Requirements for Generators (RfG) [8, 9]. In fact, indi-

vidual co-located wind and PV parks are motivated as potential candidates to be part of electricity markets

related to capacity services [10], ancillary services [11] and time-varying pricing [12] from which profitability

of future individual power parks will likely depend on [13]. Unlike separated parks that are connected to

the same grid, individual co-located parks can be oversized (i.e., the total nameplate capacity exceeds the

maximum power that can be fed into the grid) to increase the production rate and also be complemented

with battery storages. This means that co-located parks can, e.g., share control strategies [14] or provide

flexibility to the electricity grid by coordinating energy management strategies within the park [15]. As

recent as March 30, 2022, the IEA TCP Wind Task 50 was also initiated to coordinate and develop the

field of co-located wind and PV parks [16]. Furthermore, in a recent review paper, Lindberg et al. [9]

found that the scientific literature on co-located wind and PV parks is scarce, although the parks have been

studied and motivated in various aspects, e.g., more effective usage of land [17], increased utilization of the

electrical infrastructure [18] as well as shared operation and maintenance work [10]. However, the review
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paper highlights that the field of forecasting co-located parks is particularly limited, although, e.g., Long

et al. [19] highlight the importance of accurate day-ahead forecasts from aggregated co-located wind and PV

generation when trading. A natural first step in the field of co-located wind and PV forecasting is therefore

to analyze the effect of aggregation of power sources in co-located parks in terms of forecast accuracy rela-

tive to forecast accuracy of single power source production. This guides to quantify the potential benefits

of forecasting aggregated production for co-located parks relative to combining forecasts from each power

source.

There are a few studies that have focused on forecasting co-located wind and PV. Alessandrini and

McCandless [20] forecasted the output of a utility-scale co-located wind and PV park in Kuwait using analog

ensemble combined with Schaake shuffle technique to recover the correlation and autocorrelation between

the power sources. The corresponding paired solar and wind power members were thereafter summed to

build an ensemble of combined generation that was statistically consistent. At the same co-located park,

Haupt et al. [21] describes the forecasting system used to generate forecasts. In Pombo et al. [22], different

physics-informed machine learning methods to issue deterministic forecasts for the individual wind and PV

generation units in a small-scale co-located system in Denmark was assessed. The results showed that

shallow machine learning methods perform better for 5 minute resolved data, while deep learning methods

perform better for hourly resolved data for wind and solar, respectively. Furthermore, the authors found

that PV power was easier than wind power to predict due to its deterministic diurnal variability.

Although Alessandrini and McCandless [20], Haupt et al. [21] and Pombo et al. [22] are the only studies

known to the authors that explicitly forecast wind and PV production at a co-located park, there are other

studies that forecast aggregated production. In Camal et al. [23], a multivariate copula was used to generate

correlated scenarios from day-ahead probabilistic forecasts of dispersed wind, PV and small hydro plants.

The authors found that scenarios generated from aggregated production directly (as compared to separate

forecasts from each power source) reproduced less variability due to the smoothing effect. Aggregated

production also resulted in less forecast errors, which was explained by the efficient learning capacity in

high dimension of the forecast model quantile regression forest (QRF, a statistical machine learning method

introduced in detailed in Section 2.2.1). In the same paper, aggregated forecasts increased profit and reduced

costs when used for reserve bidding and unit commitment. This was explained by such applications being

sensible to the amplitude of the scenarios which was more present in scenarios generated from aggregated

production. Yin et al. [24] proposed a coordinated day-ahead scheduling of power systems consisting of

thermal, hydro, wind and PV power sources. For this, scenarios of wind and PV power production were

generated using a Monte Carlo method and a bi-variate copula. The authors found that stronger negative

correlations between wind and PV power output resulted in lower system operation cost.

In two studies by van der Meer et al. [25, 26], it was observed that the aggregated net load (Load minus

PV power production) probabilistic forecasts are better calibrated than electricity demand forecasts. Two
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plausible explanations to this are brought up which relate to the combined distributions being more Gaussian

(the forecasts where generated using Gaussian Processes which produces a Gaussian probability density

function (PDF)) [26] and that the combined time series are smoother and consequently more straightforward

to predict [25]. In van der Meer et al. [25], it was also found that for time periods of high PV power variability,

i.e., during spring, the accuracy of the PV power forecasts tended to be lower but the accuracy of the net

load forecast was higher compared to electricity demand forecasts alone.

1.1. Aim of the study

The previous section detailed that the research on co-located wind and PV park generation forecasting

is limited and many questions are still unanswered. Therefore, we clearly delimit the scope of this study.

Specifically, the purpose of this study is not to produce the most accurate forecasts. Instead, we investi-

gate whether co-locating wind and PV parks benefits forecast accuracy and value under a fixed modelling

framework. To that end, we analyze what impact the smoothing effect—caused by local wind power and PV

power time series aggregation—has on probabilistic forecast accuracy and electricity market participation.

In this way, we cover the three types of “goodness” of a forecast, namely (i) consistency, (ii) quality and

(iii) value [27]. Furthermore, we study the effect of aggregation as a function of season, since the variability

of wind and PV power generation varies over time. The contributions of this paper can be summarized as

follows:

1. We analyze the effect of aggregating varying shares of installed wind power and PV power in a co-

located park using calibrated probabilistic forecasts generated using a fixed modelling framework.

2. We simulate day-ahead electricity trading to study the impact of aggregation on the value of the

forecasts.

3. We investigate the influence of seasonal variation in power output variability on forecast accuracy.

The remainder of the paper is structured as follows. In Section 2 the data as well as the forecasting

methods, verification metrics and algorithm for participation in the day-ahead market using probabilistic

forecasts is presented. In Section 3, results from the study are presented, which are discussed in Section 4

including ideas for future studies. Finally, in Section 5, the main conclusions are put forward.

2. Data and methodology

This section presents the data and methodologies used in the study. In Section 2.1, the data used in the

study is presented. Section 2.2 presents the forecasting algorithms used to generate probabilistic forecasts

under a fixed modelling framework, whereas Section 2.3 presents visual verification tools and numerical

scores. An overview of the electricity market and optimal trading strategies based on probabilistic forecasts
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are presented in Section 2.4. Finally, Figure 1 provides an overview of the study’s framework as a flowchart

with regards to the data and methodologies presented in this section. More specifically, the figure shows how

scenarios of different wind and PV capacity ratios in the co-located park are used as inputs to the forecast

procedure and evaluated in terms of forecast performance metrics and profitability on the day-ahead spot

market.

Wind power generation PV power generation NWP Electricity prices

Aggregate
different ratios r

Divide into 3 sets:

hyperparameter, training and test

Hyperparameter set Training set Test set

Estimate QRF hyperparameters
for horizons k ∈{24,...,48}

Train QRF models for horizons
k ∈{24,...,48}

Forecast horizons k ∈{24,...,48}
using QRF models

Divide into 2 sets:

training and test

Training set Test set

Train QR models for horizons
k ∈{24,...,48}

Post-process horizons k ∈
{24,...,48} using QR models

Evaluate forecasts using per-
formance metrics of Section 2.3

Simulate market using
algorithm of Section 2.4

Input data

Scenarios

Forecast
procedure

Evaluation:
Quality

Evaluation:
Value

Calculate bidding quantiles
from regulation unit costs

Figure 1: Flowchart illustrating the input data, method steps and analysis in this study. The input data are illustrated as

parallelograms.

2.1. Data

This section presents the data used in the study. In Section 2.1.1, the co-located power park and

corresponding production data are presented. Section 2.1.2 describes the NWP used when training and

forecasting the power output and Section 2.1.3 presents the electricity prices used in simulating the electricity

market.

2.1.1. Co-located wind and PV park

Lindberg et al. [9] found that the number of utility-scale co-located wind and PV power parks are limited

on a global scale (27 in total in 2021). For this study, we used data from a co-located park on the west coast

of Sweden (Latitude: 57.033577, Longitude: 12.381662). The wind power park consists of three Vestas V90 2

MWp wind turbines with a combined nominal capacity of 6 MWp. The PV power park, which was installed

after the wind power park, consists of 9300 monocrystalline modules with a combined nominal capacity of
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2.7 MWp. This means that the ratio of PV to the whole park is roughly 31 % in terms of nominal capacity.

The dataset spans from 2016-07-02 (the date of commissioning of the PV park) to 2020-05-21 at 15 minute

resolution. The NWP dataset used, which is explained in Section 2.1.2, was available from 2016-11-09.

Prior to modeling, the data were preprocessed such that; (i) night-time values were set to zero for the PV

production; (ii) negative production was set to zero for both generators, e.g., indicating stand-by power from

inverters at zero production; (iii) production above the nominal capacity was set to the nominal capacity for

both generators; (iv) if the power production from the wind turbines were zero and the wind speed from the

NWP was above 7 m/s, the whole day was removed to avoid corrupting the forecasts errors with down-time

of the turbines due to, e.g., maintenance; (v) if the power production from the PV park was zero and the

solar irradiance from the NWP was above 100 W/m2, the whole day was removed (corresponding reason

as in (iv)); (vi) data resolution was summed to hourly resolved values since they were given in watt-hours

(Wh) and (vii) normalized by the nominal capacity of the total park output. The pre-processing resulted

in 23 days being removed from the complete data set (30,936 hours).

Figure 2 shows the observed diurnal variability of PV and wind power output including 60 % nominal

coverage for the different seasons. In this paper, the seasons are defined as 3-month periods according to

meteorological conventions; summer corresponds to June-August, fall corresponds to September-November,

winter corresponds to December-February and spring corresponds to March-May. This means that the

seasons are offset with respect to the solstices (or equinoxes), which means that the summer and spring

receives almost the same irradiance in clear sky conditions. The PV power output has an obvious diurnal

cycle where the magnitude and variability is a function of the seasons. The wind power output has a

relatively stable diurnal profile, where the diurnal variability during the summer and spring is mainly due to

temperature gradients due to the increase in solar irradiance. The highest wind power output and variability

is during the winter and the lowest is during the summer and vice versa for PV. The capacity factor, i.e.,

the ratio of produced electric energy to the amount of energy if operated at rated power for a time period,

is 14.1 % and 35.6 % for the PV and wind power park, respectively.

In order to study the different shares of wind and PV in the combined park, the first step is to combine

different ratios (r) of wind (PWP ) and solar power (PPV ) to obtain the combined power output of the

co-located park:

Ptot = rPWP + (1− r)PPV , (1)

where r ∈ {0, 0.1, . . . , 1} × 100% and the nominal capacity of PWP , PPV and Ptot are the same. This

facilitates a fair comparison when verifying the accuracy of the forecasts since many of the diagnostic

tools for probabilistic forecasts are directly dependent on the unit of the variables, which are explained in

Section 2.3. Furthermore, this means that a park with a ratio of 0 % consists of solely a PV park whereas

a park with a ratio of 100 % consists of solely a wind park, both with the same nominal capacity. A park
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Figure 2: Measured median of diurnal variability of PV power (upper subplot) and wind power (lower subplot) for the different

seasons at the co-located wind and PV power park. The blue envelopes show the observed 20-80 % quantile and the black solid

lines show the median.

with a ratio of 50 % consists of wind and PV with equal nominal capacity.

2.1.2. NWP data

This study uses data from the mesoscale NWP Meterological Cooperation on Operational Numeric

Weather Prediction (MetCoOp) with a horizontal resolution of approximately 2.5 × 2.5 km2 [28, 29]. The

NWP data are freely available from the Norwegian Meteorological Institute [30]. From the NWP data,

hourly time series of day-ahead forecasts (00 UTC cycle runs, lead times t + k, k ∈ {24, ..., 48}) of the

control ensemble member for selected meteorological variables were downloaded.

We post-process global horizontal irradiance (GHI) and wind speed at 80 meters from MetCoOp to power

output. MetCoOp provides the hourly cumulative surface downwelling shortwave radiation (J/m2), which

we convert to GHI (W/m2) by taking the difference between the time steps and dividing it by 3600. The 80

meter wind speeds were extracted by transformation of the model levels to pressure coordinates and finally

height coordinates through application of the Hypsometric equation. Thereafter, the 80 m wind speeds were

calculated using linear interpolation of the height coordinates. Forecast horizons corresponding to zenith

angles below 85° (solar elevation angles larger than 5°) are used when verifying the forecasts. This means

that we only include day-time values since there is no available power production during the night time.

When simulating the value of the forecasts, all data are included. For the NWP data, no pre-processing was

done to the data.
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2.1.3. Electricity price data

The electricity pool for Scandinavia, in which the park operates, is commonly known as Nord-Pool. Day-

ahead as well as up and down regulating prices covering 26,280 hours of the complete dataset (2016-11-09 to

2020-05-21) were downloaded from Nord-Pool [31] in order to simulate the day-ahead market. The reason

for choosing more than three years of recent data is to shuffle the dataset to test the robustness of the

results. The shuffling is done according to Figure 3. We assume perfect forecasts of the electricity prices,

which is warranted because we want to isolate the effect of time series aggregation on the forecast value.

The co-located power park, described in Section 2.1.1, is located in the electricity market bidding zone 3

(SE3), for which prices were downloaded.

2016-11-09 2020-05-21

1

2

3

Hyperparameter tuning

QRF training

QR testing

QRF testing

QR training

Figure 3: The division of the data sets for the hyperparameter tuning (white block), quantile regression forest (QRF) training

(black block), quantile regression (QR) training (gray block) and QR testing (gray striped block) for the three different model

runs. The QRF testing is the combination of the QR training and testing data sets. The numbered circles corresponds to the

three different shuffles.

2.2. Forecasting

This section presents the forecast models in our fixed modeling framework. Section Section 2.2.1 presents

the QRF model that we use to the nonlinear relationships between the independent and dependent variables,

while Section 2.2.2 describes QR, which is used to improve the calibration of the probabilistic forecasts. In

Figure 1, the different steps for generating forecasts are presented.

2.2.1. Quantile Regression Forests

QRF is a commonly used probabilistic forecasting method in the fields of PV [2] and wind power [1]

and therefore provides a baseline for analysing how the aggregation of wind and PV affects the accuracy of

probabilistic forecasts. Furthermore, it has been shown that the forecast distribution can rarely be expressed

by a common parametric distribution [32]. To that end, QRF is a nonparametric forecasting method where

no assumptions about the predictive density is assumed. QRFs is an extension of random forests (RFs) [33]

and works as follow [34]. First, k trees are grown where each branch of tree T has a random parameter vector

θt that include the variables under consideration at each split point in each tree such that T (θt). After the
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trees are grown, the next step is to calculate weights wi(x, θt) and wi(x) of observations i ∈ {1, ..., n} for

every tree and every observation, for a certain realization x of predictor X. The weights are defined as [33]:

wi(x, θt) =
1{Xi ∈ R`(x,θt)}

#{j : Xj ∈ R`(x,θt)}
, (2)

wi(x) = k−1
k∑

t=1

wi(x, θt), (3)

where R`(x,θt) is a rectangular subset of space S in which X lives in for every leaf ` = 1, ..., L. This means

that the leaf of which the unknown sample falls into in each tree is found. For each observation in the

training set, a weight is given to each observation in each tree. If the observations are in the same leaf as

the new sample, the weight is the fraction of samples in the same leaf and otherwise zero.

In RFs, the conditional mean of the observed response variable is stored in each leaf. Instead of storing

the conditional mean, QRF stores all information after which a conditional distribution can be constructed

from the observed response variables. For every x ∈ S, there is only one leaf such that x ∈ R` which can be

denoted as leaf `(x, θ) for tree T (θ). Finally, the estimated distribution function can be calculated as [34]:

F̂ (y|X = x) =
n∑

i=1

wi(x)1{Yi ≤ y}, (4)

where Y is a random response variable and y is a realization. From Equation (4), quantiles q̂τ can be

obtained. A comprehensive description of QRF can found in [34].

Prior to traning and forecasting using the QRF model, we perform hyperparameter tuning. The obser-

vations presented in Section 2.1.1 were used as target values and the NWP data described in Section 2.1.2

were used as feature variables for the QRF model. A hyperparameter tuning dataset (which consist of 4,104

hours and the total number of data points is 30,384 hours) is used to optimize the performance of the QRF

algoritm for each forecast horizon and aggregated ratio r (Equation (1)), respectively. The reason is that

we use NWP issued at midnight and the production of wind and PV power behaves differently according to

the time of the day, e.g., due to the diurnal variability of PV. The QRF model is mainly influenced by three

hyperparameters [23]; the number of trees in the forest (n estimators), the minimum number of observations

to become a leaf (min samples leaf ) and the number of features to consider when looking for the best split

(max features). max features were chosen as 2 to give opportunity to choose among all available features

at each tree. In methods with a large set of features, 1/3 of the available features is usually recommended

for regression [35]. For the other two hyperparameters (n estimators and min samples leaf ), we perform

an exhaustive grid search to find the set of parameters that minimize the continuous ranked probability

score (CRPS) using 10-fold cross-validation. The hyperparameter n estimators should generally be large

to make sure that important local features in the data are captured in some of the trees. Therefore, the

grid search was performed along n estimators ∈ {400, 450, ..., 2000}. For the minimum observations per leaf,
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min samples leaf, the minimum number of observations should not be too small since that might lead to over-

fitting the model. Considering this, we performed the grid search along min samples leaf ∈ {10, 11, ..., 20}.
After the hyperparameter tuning, we use the training data (that consists of 8760 hours) to train one

QRF model for each forecast horizon. After the QRF is built and trained, a vector of explanatory variables

from the test data set (consisting of the remaining data, i.e., 17520 hours) is dropped down the tree. The

test data will be compared at each splitpoint and directed to the most similar branch and an output can be

estimated from which we produce forecasts with evenly spaced nominal probabilities τ ∈ {0.05, ..., 0.95} (see

Equation (4)). In order to quantify differences in the results within the time period of the study, the division

into training and testing data sets are repeated for three different data intervals (in this study denoted as

shuffles) according to Figure 3.

2.2.2. Quantile Regression

Although formally introduced in Section 2.3, one of the required properties of probabilistic forecasts

relates to the calibration. Uncalibrated forecasts may introduce bias when trading. Initial verification of

the QRF model showed that the forecasts were not sufficiently calibrated (see upper panel of Figure 5),

even though we tried to extend the hyperparameter and training datasets of the model. To post-process

the QRF forecasts we use QR [36], as was initially suggested by Bremnes [37] for post-processing ensemble

predictions [3, 38]. QR produces a non-parametric cumulative distribution function (CDF) by assuming

a linear relationship between the output and the independent variables. Koenker and Bassett [36] found

that instead of minimizing the squared loss to find the conditional mean, the pinball loss function could

be minimized to find the conditional quantile of nominal probability τ . QR is formulated as follows [36]:

Similar to linear regression, we establish a linear relation between the dependent variable F̂τ (in our case

the post-processed forecasts) and the regressors x (in our case the QRF predictive distributions) such that:

F̂τ = βx+ ε, (5)

where τ is the quantile probability and ε is an error term that describes everything but the input-output

relationship that cannot be captured by the model. From this, β̂ can be estimated from the following

minimization problem:

β̂τ = arg min
β

n∑

i=1

ρτ (yi − βxi), (6)

where ρτ is an asymmetric piece wise linear function, often denoted pinball loss function, given as:

ρτ (u) =





(1− τ)u, if u < 0,

τu, if u ≥ 0.

(7)

To train the QR model, the QRF test set (17,520 hours) was divided into a new training (8760 hours) and

testing data set (in which the new test data set consists of a year (8760 hours) of data). From the QR model,
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we produce the final forecast with 19 evenly spaced nominal probabilities such that τ ∈ {0.05, ..., 0.95}. An

example of two days of probabilistic forecasts, with different issue-time and weather conditions for wind, PV

power and aggregation of equal ratio of wind and PV are shown in Figure 4. The entire forecasting model

consisting of QRF and QR is implemented using the Python library scikit-learn [35].

PV power Wind power Aggregated, r = 50%

2017−
06−

27 00:00:00
2018−

06−
13 00:00:00

24 26 28 30 32 34 36 38 40 42 44 46 24 26 28 30 32 34 36 38 40 42 44 46 24 26 28 30 32 34 36 38 40 42 44 46
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Figure 4: Two example days of normalized PV, wind and aggregation of equal level of wind and PV power production forecasts

at the co-located park. The columns represent the different power sources. The rows represent the different issue times in

UTC. The prediction intervals are shown as envelopes with nominal coverage range from 10 % to 90 % and the observations

as solid red lines.

2.3. Verification

Diagnostic tools to evaluate probabilstic forecasts are to check the calibration (also called reliability),

sharpness and resolution of the forecasts. A series of probabilistic forecasts is said to be reliable when

statistically, they correspond to the observations. Sharpness relates to the concentration of the probabilistic

forecasts. While reliability is a joint property of the forecast and the observations, sharpness is solely a

property of the forecast. Gneiting and Raftery [39] argued that the sharpness of a probabilistic forecast

should be maximized, subject to the reliability. Resolution, which should be maximized, relates to the

capability of the forecast model to issue forecasts that are different from the average observation.

As pointed out by Lauret et al. [40]; it should be noted that the diagnostic tools used to evaluate

probabilistic forecasts have different meanings from the point of view of a meteorologist and a statistician.

From a statisticians viewpoint, sharpness refers to the concentration of the predictive distribution [41, 42].

In meteorology, sharpness refers to the ability of a forecasting system to generate forecasts that deviates
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from the climatological value of the predictand [43]. From the meteorologists viewpoint, resolution measures

the ability to produce predictive distributions based on the predictand (i.e., forecasts are case-dependent)

while it refers to the ability to produce different density forecasts depending on the forecasts conditions (i.e.,

predictive distributions are not only conditioned by the values of the predictand) from a statistical point

of view [42]. In this work, sharpness refers to the concentration of the prediction intervals and resolution

quantifies the ability of the forecasting system to generate predictive distributions (i.e., the statisticians

viewpoint). Also, as pointed out by Gneiting et al. [44], reliability can be improved by statistical post-

processing (which was explained in Section 2.2.2), whereas this is not possible for resolution.

To understand potential benefits of aggregating wind and PV in terms of forecast quality, the quality

appraisal will be made according to the verification framework proposed by Lauret et al. [40]. The framework

consists of visual diagnostic tools and numerical scores to objectively rank the quality of the forecasts. In

Section 2.3.1–Section 2.3.1, the visual verification tools are explained. In Section 2.3.3–Section 2.3.5, the

numerical verification scores used in this study are presented.

2.3.1. Probability integral transform (PIT)

To assess the calibration of probabilistic forecasts, we use the probability integral transform (PIT). If

F is the CDF of a calibrated probabilitic forecast for observations Y , it holds that F (Y ) ∼ U([0, 1]). For

a larger number of forecasts and observation pairs, the calibration can be assessed empirically by plotting

the histograms of the resulting PIT values. A probabilistic forecast is reliable if, statistically, the forecast

probabilities agree with the observed frequencies. A flat PIT histogram is a necessary but not a sufficient

condition for calibration [39]. However, due to limited amount of forecast and observation pairs in the testing

set, a range of empirical probabilities could be observed despite being a reliable forecast. Considering this,

Bröcker and Smith [45] proposed consistency intervals. The lower and upper bounds can be calculated by

a the binomial distribution B(N, 1/(|Q|+1)), where N is the number of time step in the testing set. |Q|
represents the total number of quantiles in a set of quantiles Q [46]. In this sense, a set of probabilistic

forecasts are calibrated if the PIT histogram falls within the consistency interval.

2.3.2. Prediction interval average width (PIAW)

The sharpness is commonly calculated using prediction interval average width (PIAW). The sharpness

of the predictive distribution is calculated by the mean size of the central prediction intervals for different

nominal coverage rates (1− α)100 % according to:

PIAW (α) =
1

N

N∑

t=1

(q̂t,τ=1−α/2 − q̂t,τ=α/2), (8)

where q̂ is the forecasted quantile at probability τ . Note that the sharpness is a property of the forecast alone

and PIAW should not be normalized using observations. For this reason, the sharpness does not necessarily
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inform the forecaster about the quality of a forecasting method; rather, it can be used to rank calibrated

forecasts.

2.3.3. Continuous ranked probability score (CRPS)

Perhaps the most common scoring rule for probabilistic forecasts is the CRPS, which evaluates sharpness

and reliability simultaneously. The CRPS, is defined as [47]:

CRPS(Ft, yt) =

∫ ∞

−∞
(Ft(x)− 1{yt ≤ x})2 dx, (9)

where Ft is the predicted CDF, yt is the observation and 1 is the Heaviside step function. Here, subscript

t denotes the forecast and observation pair at time step t. The CRPS is expressed in the same unit as

the forecasted variable and the formulation above is a negatively oriented score, i.e., a lower value of the

CRPS indicates a better performance. The CRPS generalizes to the mean absolute error when Ft is a

deterministic forecasts which facilitates comparison between probabilistic and deterministic forecasts. The

CRPS is commonly averaged over the testing set and can be decomposed into a reliability, uncertainty and

resolution term as CRPS = Reliability + Uncertainty - Resolution [48]. We use the crpsDecomposition in

R developed by NCAR [49] to calculate the decomposed CRPS. The uncertainty term, which only depends

on the observations and a term that is also used to cluster forecasts in this study, is calculated according to

Lauret et al. [40] and is formulated as:

Uncert =

∑N
t=1

∑t
i=1 |yt − yi|
N2

, (10)

where N is the total number of observations. From Equation (10), it should be noted that the uncertainty

term is not directly related to the difficulty in forecasting the power output. Instead, when considering the

power output, the uncertainty term is a function of the variability and magnitude of the power output.

2.3.4. Interval score

Following Winkler [50] and Gneiting and Raftery [39], a proper score to assess the nominal coverage

rates (1 − α)100 % is the interval score. As for the CRPS, the interval score is negatively oriented, i.e., a

lower score is preferable. The interval score is defined as:

IS(α) =
1

N

N∑

t=1

(Ut − Lt) +
2

α
(Lt − yt)1{yt < Lt}+

2

α
(yt − Ut)1{yt > Ut}, (11)

where Lt and Ut represents the lower and upper quantile according to q̂t,τ=α/2 and q̂t,τ=1−α/2, respectively.

From Equation (11), a forecast is rewarded for a narrow prediction interval while penalized if the observation,

yt is outside the interval. The penalty is dependent on α.
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2.3.5. Quantile score

By calculating the quantile score, information about the forecast quality at specific probability levels is

obtained. As noted in Bentzien and Friederichs [51], CRPS is calculated over the complete CDF through

integration of the Brier score. Therefore, deficiencies in different parts of the distributions might be hidden,

e.g., the tails of the distribution. The average quantile score (QS), with N pairs of observations yt and

quantile forecast q̂t,τ at probability τ is given as:

QS(τ) =
1

N

N∑

t=1

ρτ (yt − q̂t,τ ), (12)

where ρτ is the pinball loss function given by Equation (7).

2.4. Trading of stochastic production

As elaborated in Section 1, co-located parks could be seen as single entities that are connected to the

electricity network at a point of common coupling. This means that the parks have to provide aggregated

bids to electricity markets, where accurate forecasts of expected production is imperative. For the time

periods analyzed in this study, the electricity pool is a dual-price market where electricity exchanges take

place in two stages; the day-ahead and the balancing (also called regulating) market. In the first stage, the

day-ahead market, power producers and consumers place bids for the next delivery period which is the next

day. At gate closure, which occurs 12 hours before delivery, energy offers based on forecasts with horizons

t+ k, k ∈ {13, ..., 36} should be proposed at hourly resolution. The market clearing yields a spot price πct+k

after matching production offers and consumption bids and a set of energy blocks yct+k to be delivered by the

power producer at every forecast horizon. Here, c defines a contract between yct+k and πct+k which means that

the power producer is financially responsible for deviations from yct+k. In the second stage, the balancing

market, deviations from the contract are translated into financial penalties. For a positive deviation, the

power producer has to sell on the balancing market for the cost of activating downward regulation services

πst+k and buy in the case of negative deviation for the cost of activating upward regulation services πbt+k.

The revenue for a power producer operating in these markets can be formulated as:

Rt+k = πct+kyt+k +Bt+k(yt+k, y
c
t+k), (13)

where the imbalance term is defined as:

Bt+k(yt+k, y
c
t+k) =




π↓t+k(yt+k − yct+k), yt+k − yct+k ≤ 0

−π↑t+k(yt+k − yct+k), yt+k − yct+k > 0,

(14)

where yt+k is the actual production, π↓t+k and π↑t+k are referred to as the regulation unit costs for downward

and upward balancing costs, respectively. These are defined as follow:

π↓t+k = πct+k − πst+k (15)
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π↑t+k = πbt+k − πct+k (16)

This means that the imbalance term, Bt+k(Yt+k, y
c
t+k), is formulated as a penalty (except for perhaps

some unusual occasions). Pinson et al. [42] showed that the energy offer, i.e., the decision variable, only

appears in the balancing market term and that the solution that maximize the revenue in the stochastic

optimization problem is the optimal offer:

y∗t+k = F̂−1t+k

(
π↓t+k

π↑t+k + π↓t+k

)
, (17)

where F̂t+k is the predicted CDF, in this case the forecasted power production. This means that the optimal

production offer corresponds to a specific quantile that is a direct function of the regulation unit costs. For

derivation of the expression, the reader is referred to Bremnes [52]. We use perfect forecasts of spot prices and

regulating unit costs, which means that we do not take into account any spatial or temporal dependencies

affecting these prices. However, the reader should note that the regulating costs generally are difficult to

estimate with hourly resolution [53]. An overview of the methodology and the data used in this study is

presented in Figure 1.

3. Results

Here results from various ratios of aggregated wind and PV are presented. The visual inspection of the

forecasts are presented in Section 3.1 and the numerical verification scores are presented in Section 3.2. In

Section 3.3, the results from the electricity market simulation are presented.

3.1. Visual verification tools

3.1.1. Calibration assessment

PIT histograms, averaged over all forecast horizons, for the respective power sources as well as aggregated

output with equal nominal capacity are presented in Figure 5 for the forecast and observation pairs in

shuffle 2. Note that the other ratios and shuffles showed similar results which is why they are not included.

Deviations from a uniform histogram (red lines in Figure 5) occur due to limited amount of forecast and

observation pairs in the testing set and show the range of empirical probabilities (dashed black lines in

Figure 5) that could be observed despite being a reliable forecast. In this case, the consistency interval

correspond to the nominal probabilities τ , i.e., the 5-95 % probability interval.

Figure 5 (upper row) shows that the forecasts generated from solely the QRF model are under-dispersive

which is to say that the predictive distributions are too narrow on average. After post-processing the QRF

forecasts with QR, Figure 5 (lower row) shows that the probabilistic forecasts are indeed better calibrated,

although not perfectly. After post-processing the QRF forecasts, the consistency band are wider because

the size of the testing data set is halved. Also, the consistency intervals for PV forecasts are wider since
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these are limited to solar elevation angles of 5° or more. Most histogram bars remain within the margin that

could be caused by randomness from which we conclude that the calibration is satisfactory for the purpose

of the study since we cannot find any consistent miscalibration. To that end, we continue now only with

forecasts generated from QRF and post-processed with QR.
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Figure 5: PIT histograms for wind power, PV power and 50 % aggregation level at the studied site for shuffle 2. Consistency

intervals are denoted by the horizontal dashed lines and the red lines show a perfectly reliable forecast. Note the differences

on the y-axes.

3.1.2. Sharpness

Recall from Section 2.3 that sharpness is a property of the forecast only, i.e., observations are excluded.

Therefore, a forecast system can produce sharp forecasts, despite being useless if they are not reliable. Fig-

ure 6 shows the PIAW (which represents the sharpness) of probabilistic forecasts with α ∈ {0.2, 0.3, ..., 0.8}
generated for a park with ratios r ∈ {0, 0.2, ..., 1} for the different seasons. The reason for solely plotting

the ratios in steps of 20 % is to reduce clutter. For the complete test data set (“All year”) and during the

summer, any aggregated ratio of co-located production of more than 20 % improve the sharpness of the

forecasts compared to individual parks. However, during the fall in shuffle 3 the improvement is realized

with a ratio of more than 60 %. During the winter in shuffle 1 and 2, the improvement is realized with

a ratio of more than 40 % and solely 20 %, respectively. No improvement over an individual PV park is

realized in shuffle 2 during spring.
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Figure 6: PIAW as a function of the nominal coverage rate of the prediction intervals for different nominal capacity of wind

power to the nominal capacity of the entire park. The rows corresponds to the shuffles and the columns to the seasons.

3.2. Numerical verification scores

3.2.1. Continuous ranked probability score (CRPS)

Figure 7 shows the CRPS and its decomposition into reliability, resolution and uncertainty as well as

the variance for different aggregated ratios of wind and PV in the co-located park calculated over the whole

test set (“All year”) and the different seasons for the shuffled data sets. 0 % indicates a park with solely PV

power and 100 % indicates a park with solely wind power. For all seasons and shuffles, the CRPS is lowered

when issuing probabilistic forecasts of aggregated production except for the spring in shuffle 2 where the

lowest CRPS is for a wind park and in shuffle 1 during the winter when the lowest CRPS is for an individual

PV park. In all cases, the CRPS is lowered when issuing probabilistic forecasts of aggregated production

where the optimal mix is found at a 50 % – 60 % ratio considering all data as well as in the summer, fall and

spring. This is explained by the the aggregated power output from a co-located park being less variable,

which is shown by the lowered variance.

The resolution terms, which should be maximized, are lowered when aggregating the data, indicating

that the ability of the forecast model to produce different forecasts depending on the forecast conditions

are becoming worse. At the same time, the uncertainty term, which is an artifact of the observation and
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should be minimized, is also decreased. The lowered uncertainty term and the reduction in variance is

explained by the smoothing effect, where the average variability of the power output is lowered when the

power output of the two sources are combined. Predicting a smoother signal means that the forecast model

needs to capture less variability, which results in lower forecast resolution. Recall from Section 2.3 that the

sharpness should be maximized subject the to reliability according to Gneiting and Raftery [39]. When the

time series are aggregated, Figure 6 and Figure 7 show that the sharpness as well as the reliability are, in

most cases, improved. This indicate that co-locating wind and solar has the effect of producing sharper and

more reliable probabilistic forecasts as compared to generating forecasts from individual power parks.
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Figure 7: The rows present the CRPS and corresponding decomposition scores as well as the variance for different shares

of wind in the combined park for the different seasons and shuffled data sets, respectively. The columns corresponds to the

seasons.

3.2.2. Variability in power output

The uncertainty term presented in Figure 7 differ between seasons, e.g., the highest uncertainty term

in PV power production is in the spring and summer whereas the highest uncertainty term for wind power

production is during the winter. The uncertainty term is determined by the observed power output according
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to Equation (10), which means that the term depicts the variability in the power output. In order to

understand the effect of aggregation at different levels of variability, we calculate the uncertainty term of

wind power on a daily basis and cluster these values. The reason for not calculating the daily uncertainty

terms of PV power is the strong seasonality of the insolation. Considering this, the highest values of the

daily uncertainty terms (i.e., daily variability) in PV power is found in the spring, which was already assessed

when dividing into seasons in Figure 7. Figure 8 shows the normalized daily wind power uncertainty terms

for each day of the year for the shuffled data sets. The calculated daily uncertainty terms are relatively

homogeneously spread throughout the year where values are in between 0–25 % uncertainty level. The grid

lines on the y-axis corresponds to the different uncertainty term clusters that are used for the analyis, i.e.,

0–5 %, 5–10 %, 10–15 %, 15–20 % and 20–25 %.
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Figure 8: Uncertainty terms calculated on a daily basis for wind power and normalized by the nominal capacity of the park

for the shuffled datasets.

In Table 1, the decomposed CRPS for different uncertainty term clusters as well as different aggregated

ratios of wind and PV is shown. During times when the daily wind power variability is the lowest (i.e.,

uncertainty term cluster 0-5 %), the CRPS of a park consisting of 90 % wind power is the lowest. As the daily

variability in wind power is increasing, the CRPS is also increasing for a pure wind park, with the exception

of the uncertainty term cluster 20-25 %. From visual inspection (not shown in this paper), this uncertainty

term cluster was restricted to days where the wind power production went from a small power output to

rated power output within the course of the day. The non-increasing CRPS for this uncertainty term cluster

is likely explained by the power curve, from which wind power output is approximately determined. Above

the rated and below the cut-out wind speed electric power is constant, which is relatively straightforward to

forecast and results in a lower CRPS score for this uncertainty term cluster. By assuming that the forecasts

are statistically independent, one may calculate the standard error to gain information about the confidence

in the result. Considering the 95 % confidence limit of the standard errors for the calculated CRPS values
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Table 1: The CRPS (mean ± standard error with 95 % confidence limits) and corresponding decomposition into reliability

(“Rel”), resolution (“Res”) and uncertainty (”Uncert”) for different ratios of nominal wind power to the nominal power of

the park and different binned uncertainty term levels for all shuffled datasets. The parenthesis in the column headers show

the number of days with the given uncertainty term level. 0 % indicates a park solely PV and 100 % indicates a park with

solely wind power. The values are normalized by the nominal power meaning that the unit is %. The lowest CRPS values and

corresponding decomposition terms in each uncertainty term cluster are underlined and in bold font.

0-5 % (359 days) 5-10 % (343 days) 10-15 % (247 days) 15-20 % (117 days) 20-25 % (29 days)

CRPS Res Rel Uncert CRPS Res Rel Uncert CRPS Res Rel Uncert CRPS Res Rel Uncert CRPS Res Rel Uncert

0% 6.49 (±0.099) 9.93 0.07 16.35 6.45 (±0.103) 9.38 0.08 15.76 6.43 (±0.123) 7.93 0.12 14.24 6.42 (±0.206) 6.13 0.23 12.32 5.12 (±0.276) 8.39 0.12 13.39

10% 6.06 (±0.091) 8.76 0.07 14.75 5.90 (±0.094) 8.40 0.07 14.24 6.06 (±0.110) 6.97 0.09 12.94 6.30 (±0.192) 5.16 0.20 11.26 5.01 (±0.226) 7.69 0.08 12.62

20% 5.65 (±0.083) 7.85 0.06 13.44 5.65 (±0.085) 7.38 0.06 12.97 6.01 (±0.096) 6.07 0.08 12.00 6.34 (±0.173) 4.48 0.18 10.64 5.17 (±0.234) 7.23 0.08 12.32

30% 5.20 (±0.072) 7.23 0.05 12.38 5.42 (±0.075) 6.55 0.05 11.92 6.13 (±0.100) 5.36 0.10 11.39 6.26 (±0.152) 4.26 0.14 10.38 5.60 (±0.246) 6.89 0.13 12.36

40% 4.88 (±0.065) 6.81 0.05 11.63 5.28 (±0.069) 5.90 0.05 11.13 6.48 (±0.101) 4.76 0.13 11.11 6.49 (±0.155) 4.17 0.16 10.50 6.14 (±0.291) 6.75 0.18 12.71

50% 4.52 (±0.056) 6.79 0.04 11.27 5.25 (±0.066) 5.47 0.05 10.67 6.83 (±0.107) 4.53 0.15 11.21 6.76 (±0.158) 4.43 0.18 11.00 6.38 (±0.305) 7.09 0.12 13.34

60% 4.22 (±0.051) 7.02 0.05 11.19 5.32 (±0.066) 5.33 0.05 10.60 7.32 (±0.117) 4.60 0.19 11.72 7.19 (±0.168) 4.88 0.24 11.83 7.00 (±0.349) 7.48 0.17 14.30

70% 4.01 (±0.048) 7.27 0.06 11.23 5.48 (±0.070) 5.46 0.05 10.89 7.87 (±0.130) 4.99 0.24 12.62 7.63 (±0.190) 5.58 0.29 12.92 7.26 (±0.382) 8.42 0.18 15.51

80% 3.83 (±0.048) 7.66 0.08 11.40 5.84 (±0.079) 5.74 0.07 11.51 8.66 (±0.146) 5.47 0.31 13.82 8.45 (±0.221) 6.12 0.35 14.22 7.92 (±0.438) 9.23 0.24 16.91

90% 3.76 (±0.052) 8.19 0.11 11.83 6.16 (±0.084) 6.38 0.08 12.46 9.28 (±0.159) 6.30 0.32 15.26 9.34 (±0.248) 6.81 0.45 15.70 8.28 (±0.450) 10.40 0.22 18.46

100% 3.95 (±0.057) 8.88 0.15 12.67 6.70 (±0.092) 7.10 0.09 13.71 10.16 (±0.175) 7.09 0.36 16.90 10.46 (±0.278) 7.42 0.54 17.34 8.98 (±0.512) 11.45 0.25 20.17

(parenthesis values in Table 1), aggregation decrease the standard error. This means that not only are the

forecasts accuracy improved from aggregation on average, but the variability in the forecast errors are also

lowered. Furthermore, the differences between the calculated CRPS values for the different ratios are much

larger than the calculated standard errors. We can thus conclude that the improved forecast accuracy is

statistically significant.

Forecasting aggregated time series has the effect of dampening the combined uncertainty term, i.e.,

reducing the variability of the power production. Aggregation furthermore, similar to what is illustrated

in Figure 7 reduce the reliability term, which combined with the other decomposition terms result in a

lower overall CRPS score. Another interesting aspect is that the CRPS for an individual PV power park is

relatively stable (and slightly decreasing) as the wind power variability is increasing. This is explained by

the fact that the variability in the power sources are anti-correlated, i.e., less solar power is produced during

windy conditions while wind power production is lower during sunny conditions. This indicates that during

periods when one of the power sources are better predicted (low CRPS), the other one is predicted slighly

worse (higher CRPS).

3.2.3. Interval score

Similar to the CRPS score shown in Figure 7, the interval score is a negatively oriented score. Table 2

shows the interval score for the 20 % – 80 % central prediction interval for different ratios of wind to the

nominal capacity of the entire park. Considering the whole test data set as well as the summer, fall and

spring; the lowest interval score of the 20 %–80 % central prediction interval is found at around 50 % – 60

% wind, except for shuffle 1 in the spring, where the sizing that lowers the 60 % – 80 % central prediction

interval the most is a ratio of 70 % wind power to the combined nominal capacity of the park. For the same
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central prediction intervals, a mix of of 10 % – 30 % wind power to the combined park yields the lowest

scores during the winter.

3.2.4. Quantile score

Figure 9 shows the negatively oriented quantile score as a function of the probability levels τ ∈ {0.1, 0.15, ..., 0.9}
with r ∈ {0, 0.2, ..., 1} during the different seasons. Again, as in Figure 6, the reason for solely plotting these

ratios was to reduce clutter because results were found to follow the same trend. When forecasting aggre-

gated production, the forecasts are improved by means of the quantile score compared to individual parks.

However, in shuffle 3 during fall the improvement is found after 40 % aggregation level, all ratios except

for 20 % in shuffle 1 and 2 in the spring and all ratios except for 80 % in shuffle 2 and 3 in the winter. In

shuffle 1 in the winter, the quantile scores were always higher for an aggregated park as compared to a pure

PV park. On top of an improved quantile score, aggregated production improves the symmetry across the

range of quantiles compared to the forecasting of the individual power sources. This means that forecasts

of the highest and lowest quantiles using aggregated time series are better estimated compared to forecasts

of an individual wind or solar park.
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Figure 9: Quantile score as a function of the probability level normalized by the nominal power. The columns show the differnt

seasons and the rows show the shuffled data sets.
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Table 2: The interval score (”IS”) with varying prediction intervals for different ratios of nominal wind power to the nominal

power of the complete park. 0 % indicates a PV park and 100 % indicates wind power park. The values are normalized by the

nominal power meaning that the unit is %. The lowest interval score for each central prediction interval and time period are

underlined and in bold font.

(a) Shuffle 1.

All year Summer Fall Winter Spring

IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8

0% 10.38 11.17 12.89 16.55 9.27 10.01 11.78 15.54 11.43 12.33 14.40 18.05 7.47 8.51 10.47 14.10 11.03 11.98 14.03 17.98

10% 9.63 10.36 11.86 15.22 8.65 9.37 10.86 14.14 10.85 11.69 13.64 17.53 7.40 8.32 10.35 14.19 10.18 11.11 13.03 16.91

20% 9.25 10.03 11.57 14.85 8.28 8.86 10.26 13.40 10.08 10.97 12.76 16.45 7.61 8.73 10.52 14.60 9.60 10.51 12.24 15.64

30% 8.90 9.68 11.22 14.42 7.85 8.50 9.92 13.30 9.88 10.65 12.46 16.41 7.72 8.64 10.63 14.80 9.49 10.12 11.61 15.21

40% 8.76 9.52 10.98 14.23 7.64 8.26 9.62 12.84 9.46 10.33 12.05 15.52 8.05 8.87 10.93 15.28 8.92 9.76 11.46 14.90

50% 8.54 9.31 10.91 14.09 7.45 8.13 9.55 12.62 9.42 10.17 11.82 15.26 8.15 9.38 11.65 15.56 8.72 9.61 11.35 14.69

60% 8.55 9.21 10.63 14.18 7.62 8.35 9.70 12.91 9.54 10.21 11.82 15.02 8.45 9.53 11.89 16.16 8.65 9.57 11.24 14.96

70% 8.49 9.22 10.83 14.21 7.65 8.37 9.94 13.03 9.76 10.41 11.86 14.88 9.00 9.89 11.82 16.31 8.76 9.60 11.24 14.73

80% 8.69 9.48 11.09 14.84 7.88 8.62 10.27 13.52 9.92 10.62 12.29 15.71 9.61 10.58 12.96 17.39 9.03 9.74 11.49 15.17

90% 9.19 9.95 11.63 15.85 8.34 9.17 10.76 14.21 10.43 11.08 12.76 16.40 10.40 11.78 14.30 19.37 9.25 10.07 11.96 15.90

100% 9.94 10.86 12.72 16.92 8.85 9.68 11.40 14.67 11.07 11.83 13.78 17.56 11.92 13.53 16.53 21.40 10.27 11.23 13.23 16.81

(b) Shuffle 2.

All year Summer Fall Winter Spring

IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8

0% 10.52 11.30 12.94 16.47 10.02 10.71 12.35 15.95 11.25 12.20 14.15 18.32 8.96 9.78 11.23 14.14 13.11 13.77 14.97 17.75

10% 9.79 10.58 12.07 15.52 9.44 10.11 11.54 15.02 10.30 11.44 13.25 17.19 8.41 9.05 10.37 13.52 12.08 12.71 14.01 16.73

20% 9.29 10.06 11.55 14.94 9.05 9.72 11.00 14.14 9.65 10.63 12.58 16.66 8.09 8.90 10.43 13.69 11.20 11.82 12.99 15.94

30% 8.96 9.74 11.24 14.52 8.83 9.45 10.69 13.66 9.36 10.32 12.12 15.96 8.04 8.81 10.53 13.86 9.98 10.87 12.39 15.45

40% 8.75 9.55 10.99 14.39 8.66 9.26 10.42 13.41 8.89 9.90 11.61 15.73 8.06 9.02 10.81 14.45 9.81 10.64 11.97 14.96

50% 8.58 9.32 10.91 14.07 8.60 9.17 10.42 13.11 8.75 9.63 11.50 15.09 8.16 9.24 11.20 14.80 8.75 9.29 10.94 14.25

60% 8.59 9.45 11.06 14.27 8.69 9.39 10.63 13.27 8.55 9.48 11.33 15.05 8.46 9.53 11.68 15.57 8.50 9.44 11.08 14.21

70% 8.87 9.77 11.46 14.82 9.00 9.70 11.04 14.04 8.61 9.49 11.37 15.06 9.15 10.50 12.76 16.72 8.52 9.52 11.18 14.28

80% 9.29 10.09 11.67 15.26 9.26 9.98 11.29 14.58 9.04 9.87 11.59 15.38 10.18 11.21 13.26 17.50 8.60 9.31 10.82 14.09

90% 9.43 10.28 12.13 15.85 9.75 10.55 12.23 15.88 9.55 10.47 12.44 16.15 9.51 10.43 12.57 16.67 7.88 8.63 10.38 13.78

100% 9.95 10.80 12.65 16.50 10.44 11.27 13.05 16.65 10.24 11.13 13.04 17.10 9.53 10.44 12.48 16.79 8.15 8.86 10.54 14.22

(c) Shuffle 3.

All year Summer Fall Winter Spring

IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8 IS0.2 IS0.4 IS0.6 IS0.8

0% 9.35 10.74 13.23 16.36 8.86 10.31 12.89 15.96 11.24 12.37 14.3 17.09 8.51 9.47 11.14 14.07 9.93 11.55 14.58 18.04

10% 8.74 9.84 12.07 15.36 8.19 9.34 11.73 14.76 10.47 11.39 12.97 16.2 8.33 9.1 10.56 13.83 9.2 10.5 13.14 16.83

20% 8.23 9.21 11.15 14.41 7.84 8.84 10.83 13.9 9.57 10.63 12.32 15.61 7.84 8.49 9.95 13.07 8.59 9.69 11.93 15.53

30% 7.9 8.67 10.28 13.68 7.51 8.23 9.72 13.01 9.23 9.98 11.45 14.63 7.55 8.35 10.13 13.41 8.22 9.06 10.8 14.51

40% 7.75 8.4 9.93 12.73 7.37 7.9 9.25 11.81 8.51 9.18 10.89 13.94 7.63 8.53 10.35 13.36 8.15 8.8 10.37 13.29

50% 7.67 8.27 9.53 12.43 7.3 7.75 8.76 11.42 8.09 8.88 10.4 13.62 7.77 8.63 10.25 13.48 8.02 8.61 9.93 12.9

60% 7.65 8.25 9.62 12.53 7.33 7.83 8.97 11.5 8.19 9.06 10.68 14.55 7.9 8.78 10.6 14.07 8 8.51 9.85 12.69

70% 7.79 8.42 9.74 12.66 7.48 8.05 9.16 11.8 8.22 8.97 10.69 14.33 8.51 9.27 11.03 14.45 7.94 8.54 9.78 12.58

80% 8.21 8.87 10.17 13.16 8.04 8.66 9.73 12.27 8.28 9.02 10.68 14.69 9.05 9.83 11.55 15.39 8.26 8.88 10.16 12.96

90% 8.65 9.33 10.76 13.78 8.59 9.16 10.45 13.15 8.32 9.25 10.91 14.48 9.57 10.35 12.1 15.78 8.6 9.31 10.67 13.6

100% 9.56 10.36 11.87 15.09 9.59 10.34 11.72 14.73 9.02 9.8 11.39 14.86 10.39 11.32 13.12 16.8 9.44 10.25 11.74 14.9
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3.3. Electricity trading

Based on the probabilistic forecasts of electricity production and the optimal trading strategy in the

electricity market presented in Section 2.4, this section evaluates results from electricity market simulation.

In Table 3, results with different ratios of wind and PV power are presented for the shuffled datasets. In

order to make the result from trading comparable between the different ratios, the parks are scaled such

that all ratios produce the same amount of energy when using perfect forecasts (20.0 GWh). The term

part of imbalance is defined as the sum of deviations divided by the sum of the produced energy. The

performance ratio is calculated by normalizing the total revenue from the forecasts by the revenue that

would be obtained with perfect forecasts, which is a metric that can be used to evaluate rivaling bidding

strategies in the electricity market [42]. Using perfect predictions, the total revenue and average energy price

indicate that the spot prices when the PV park produces its energy are higher than during the times that the

wind park produces energy, meaning that the potential revenue is higher for a PV park than a wind power

park. This is explained by the penetration levels of PV and wind power in the Swedish power systems. In

2017, 2018, 2019 and 2020, PV produced 0.1 %, 0.3 %, 0.4% and 0.6 % of net electricity production and wind

power produced 11.0 %, 10.4 %, 12.0 % and 17.1 % of net electricity production [54]. Due to the low amount

of PV to the total net production, the correlation of PV power production, as compared to wind power,

to the existing power production across the power system is lower which results in a higher value factor of

PV [55]. For Shuffle 1 and 2, PV power forecasts performs worse than the wind power forecasts, yielding

a lower performance ratio, while the opposite is true for Shuffle 3. However, when forecasting aggregated

time series, the performance ratio is higher than for a park consisting of solely wind or PV. This indicate

that aggregating forecasts at a co-located wind and PV power park translates into improved performance

when trading electricity. When the aggregated time series are forecasted, deviations from the contracted

energy production, i.e., surplus and shortage, is reduced causing the regulation costs to be lowered, which

improves the performance ratio and lowers the imbalance. The optimal ratio is, similar to what was found

in Section 3.1 and Section 3.2 found at around 40 % – 60 % wind power to the combined nominal capacity of

the park. This is explained by the forecasts of aggregated time series being improved by means of accuracy,

reliability and sharpness compared to forecasts of individual power sources which translates into improved

trading in the day-ahead market.

4. Discussion

The scientific literature has motivated co-location of wind and PV park in several aspects, e.g., reduced

project development costs, synergies in operation and maintenance, more effective land usage and better

use of the electrical infrastructure [9]. Despite these foreseen benefits, the scientific literature on co-located

wind and PV power parks is limited, in particular related to forecasting. Therefore, this study presents a
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Table 3: Simulation results over market participation for different shares of wind and PV power in the co-located park. The

columns represent the different shares and corresponding results in the rows. Values in parenthesis denote perfect forecasts.

(a) Shuffle 1.

0% 20% 40% 60% 80% 100%

Contracted [GWh]: 22.13 (20.0) 22.01 (20.0) 22.1 (20.0) 22.23 (20.0) 22.7 (20.0) 22.95 (20.0)

Surplus [GWh] 5.93 (0) 5.60 (0) 5.70 (0) 5.80 (0) 6.41 (0) 6.85 (0)

Shortage [GWh] 3.82 (0) 3.69 (0) 3.76 (0) 3.77 (0) 3.95 (0) 4.15 (0)

Down-regulation cost [10ˆ3 Euro] 10.75 (0) 9.01 (0) 7.82 (0) 7.77 (0) 8.19 (0) 9.06 (0)

Up-regulation cost [10ˆ3 Euro] 11.88 (0) 10.37 (0) 8.48 (0) 8.78 (0) 8.77 (0) 9.18 (0)

Total revenue [10ˆ3 Euro] 722.2 (744.9) 707.3 (726.7) 697.9 (714.2) 688.6 (705.2) 681.3 (698.3) 674.6 (692.9)

Avg. energy price [Euro/MWh] 32.64 (37.21) 32.13 (36.15) 31.58 (35.43) 30.98 (34.91) 30.02 (34.52) 29.4 (34.21)

Avg. down-regulation unit cost [Euro/MWh] 4.48 (0) 4.28 (0) 4.32 (0) 4.36 (0) 4.38 (0) 4.43 (0)

Avg. up-regulation unit cost [Euro/MWh] 5.02 (0) 4.47 (0) 4.47 (0) 4.47 (0) 4.50 (0) 4.10 (0)

Part of imbalance [% of produced enery] 48.65 (0) 46.21 (0) 46.9 (0) 47.34 (0) 51.23 (0) 54.31 (0)

Performance ratio [%] 96.96 (100) 97.33 (100) 97.72 (100) 97.65 (100) 97.57 (100) 97.37 (100)

(b) Shuffle 2.

0% 20% 40% 60% 80% 100%

Contracted [GWh]: 24.85 (20.0) 23.04 (20.0) 21.82 (20.0) 21.32 (20.0) 21.28 (20.0) 21.21 (20.0)

Surplus [GWh] 9.02 (0) 6.90 (0) 5.70 (0) 5.30 (0) 5.30 (0) 5.32 (0)

Shortage [GWh] 4.17 (0) 3.87 (0) 3.87 (0) 3.97 (0) 4.00 (0) 4.11 (0)

Down-regulation cost [10ˆ3 Euro] 6.16 (0) 5.06 (0) 5.64 (0) 6.12 (0) 6.41 (0) 7.14 (0)

Up-regulation cost [10ˆ3 Euro] 17.65 (0) 13.97 (0) 10.18 (0) 9.12 (0) 10.13 (0) 9.42 (0)

Total revenue [10ˆ3 Euro] 703.7 (727.5) 655.4 (674.4) 631.9 (647.7) 616.5 (631.7) 604.4 (621.0) 596.8 (613.3)

Avg. energy price [Euro/MWh] 28.32 (36.37) 28.45 (33.72) 28.96 (32.39) 28.91 (31.58) 28.4 (31.05) 28.13 (30.67)

Avg. down-regulation unit cost [Euro/MWh] 6.11 (0) 5.28 (0) 5.27 (0) 5.27 (0) 5.28 (0) 5.36 (0)

Avg. up-regulation unit cost [Euro/MWh] 6.01 (0) 4.58 (0) 4.60 (0) 4.59 (0) 4.54 (0) 4.43 (0)

Part of imbalance [% of produced enery] 65.96 (0) 53.85 (0) 47.86 (0) 46.33 (0) 46.43 (0) 47.14 (0)

Performance ratio [%] 96.73 (100) 97.18 (100) 97.56 (100) 97.59 (100) 97.34 (100) 97.3 (100)

(c) Shuffle 2.

0% 20% 40% 60% 80% 100%

Contracted [GWh]: 21.01 (20.0) 21.73 (20.0) 22.05 (20.0) 22.65 (20.0) 23.13 (20.0) 23.82 (20.0)

Surplus [GWh] 5.65 (0) 5.81 (0) 5.90 (0) 6.47 (0) 6.94 (0) 7.78 (0)

Shortage [GWh] 4.64 (0) 4.12 (0) 3.92 (0) 3.91 (0) 3.91 (0) 4.08 (0)

Down-regulation cost [10ˆ3 Euro] 8.56 (0) 7.99 (0) 8.22 (0) 8.54 (0) 9.41 (0) 11.20 (0)

Up-regulation cost [10ˆ3 Euro] 11.87 (0) 13.03 (0) 13.59 (0) 16.00 (0) 18.78 (0) 20.94 (0)

Total revenue [10ˆ3 Euro] 910.2 (934.5) 904.3 (926.7) 899.3 (921.1) 892.4 (916.9) 885.5 (913.6) 878.9 (911.0)

Avg. energy price [Euro/MWh] 43.3 (46.72) 41.62 (46.24) 40.78 (45.9) 39.41 (45.64) 38.28 (45.43) 36.89 (45.27)

Avg. down-regulation unit cost [Euro/MWh] 5.176 (0) 5.075 (0) 5.066 (0) 5.08 (0) 5.066 (0) 5.044 (0)

Avg. up-regulation unit cost [Euro/MWh] 3.911 (0) 4.409 (0) 4.571 (0) 4.528 (0) 4.586 (0) 4.473 (0)

Part of imbalance [% of produced enery] 51.48 (0) 49.5 (0) 48.94 (0) 51.67 (0) 53.97 (0) 58.97 (0)

Performance ratio [%] 97.40 (100) 97.58 (100) 97.63 (100) 97.32 (100) 96.92 (100) 96.47 (100)
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first study on the effect of aggregating the power sources on probabilistic forecast quality and value and

what possible synergies might be found when forecasting different ratios of co-located wind and PV under

a fixed modelling framework.

An important and challenging aspect in probabilistic forecasting relates to calibration, which means that

the forecasts should, statistically, correspond to the observations. Calibration is furthermore important in

decision making processes, such as electricity market trading, in order to produce accurate approximation of

the underlying forecast uncertainty. Trading using unreliable probabilistic forecasts will likely lead to biases.

To produce calibrated probabilistic forecasts of wind and PV power, we use QRF post-processed with QR

using inputs from the regional NWP model MetCoOp. Although the main contribution of this paper is not

to produce the most accurate probabilistic forecasts, but rather analyze the effect of aggregation within the

chosen model framework itself, possible improvements would be to test and compare additional statistical

and physical forecasting models. Furthermore, future research should also include more explanatory variables

or include ensemble members. Ensemble members were excluded because the configuration of the ensemble

was changed several times within the studied time period. In this study, the forecast models are trained

for each lead time which corresponds to the specific phase in the diurnal cycle that the NWP forecast

pertains to. However, antecedent time steps (due to non-zero auto-covariance) are interesting to consider

as explanatory variables in future studies especially if the temporal dependence structure is of importance,

e.g., if the co-located park includes storage. For this, the marginal probabilities could be transformed to

scenarios that could be used in stochastic optimization.

When studying the effect of aggregating co-located wind and PV power, the results indicated that a

substantial gain could be realized during all seasons in terms of the CRPS, the interval score and the

quantile score. The improvement was the lowest during the winter, which corresponds to a time period of

low PV power output. On top of this, we found that the variability in the respective power source to be

anti-correlated, which carry over to slightly anti-correlated CRPS values. These are interesting and useful

results since the complementary characteristics in the power output variability carries over to complementary

characteristics in terms of forecast performance. In fact, the output of wind and PV power production is

generally anti-correlated [7].

In terms of the CRPS, we found that the variability in terms of the variance is lowered from aggregation,

which translates into overall improved forecasts. As was shown by Lindberg et al. [56], the variability of a

co-located wind and PV park is lowered both because of lack of correlation and negative correlation. Here

it is shown that the lower variability indeed carries over to more accurate forecasts, at least for a majority

of the time. To improve the confidence in the results, the datasets were shuffled, trained and evaluated over

three separate years. Although the average production varied slightly between the different time periods,

results showed that the lowered variability from co-location carries over to more accurate forecasts in all of

the shuffled time periods. Apart from the general trend is that aggregation improves the forecast accuracy,
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the results also showed that winter sticks out, where a park with mostly PV power produce the lowest

forecast errors. This is explained by the latitude location of the park and corresponding low amount in solar

irradiation in the winter. On top of more accurate forecasts when aggregating the time series, results also

showed that the standard deviations of the forecast errors are lowered, which means that the variations in

the forecast errors is lowered. Although the reliability and sharpness should be improved subject to each

other according to Gneiting and Raftery [39], we found that these characteristics both improved by means

of aggregating co-located wind and PV. However, this comes at the cost of lowering the resolution of the

forecasts. A lower resolution means that the ability to produce different density forecasts depending on

the forecasts condition is reduced, which is explained by the variability of the aggregated time series being

lowered.

In Petropoulos et al. [57], different types of uncertainties related to forecasting are brought up. Ac-

cording to the decomposition of the CRPS [48], the uncertainty term is a function of the variability in the

observations. However, in a broader perspective, uncertainties might relate to, e.g., parametrizations or

phase error in the NWP model, which carry over to power production. Considering that such uncertainties

can be isolated, a future research direction would be to further extend the study, e.g., by estimating what

uncertainties that relate to the physical NWP model and which uncertainties relate to the statistical model.

One aspect of the goodness of a forecast is whether or not it results in an increment economic value,

according to Murphy [27]. Our results showed that aggregating co-located wind and PV power forecasts

has the effect of improving the performance in the electricity market by reducing the deviations from the

contracted energy sales. These deviations translate into a lower ratio between the regulation costs and the

incomes. We assumed perfect forecasts of the spot price as well as the regulation costs. However, electricity

prices are, like wind and PV power, generally seen as stochastic variables and requires forecast strategies

which we left out of this study. On top of this, the electricity prices and power production are not necessarily

independent variables, especially with large shares of wind power [58], which was also shown in this study.

Although not specifically applied in this study, improved forecasts will likely be useful in other type of

markets, such as capacity markets [10] and for ancillary services [11], for which co-located wind and PV

have been proposed as future candidates. This study could also be extended and applied to those markets

in order to study other aspects of potential forecast value from co-location of wind and PV power.

While the number of co-located wind and PV power parks are limited to a few on a global scale, it

remains an interesting avenue for future work to validate the results in this study by forecasting aggregated

wind and PV at other parks. On top of this, we have shown the effect of temporal aggregation at a single

park. Another interesting future research direction is to see how spatio-temporal aggregation, e.g., in a

virtual power park with spatially sparse wind and PV parks, compares to temporal aggregation in terms of

forecast accuracy. This could be done by analyzing if the local weather has a more pronounced effect on the

uncertainty mitigation as compared to parks at different locations, not affected by the same type of weather.
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5. Conclusions

In this work, we investigated the effect on probabilistic forecast quality and value when aggregating wind

and PV power at a co-located park by validating the result using three years of observed power output. This

was done by comparing different ratios of wind and PV to the total capacity of the park, where the forecasts

are thoroughly evaluated using qualitative and quantitative methods and by simulating day-ahead market

trading under a fixed modelling framework. The results presented in this study should be generally valid for

other co-located parks in similar climates and show that the smoothing effect from aggregation carries over

to more accurate forecasts quantified in terms of the CRPS, quantile score and interval score. The optimal

ratio of wind and PV in the co-located park was found at around 50 % – 60 % wind power to the total

nominal capacity of the park when studying the whole time period. Forecasting co-located production also

has the effect of producing more reliable and sharper predictive distributions which is also most prominently

the case during the summer, fall and spring and comes at the cost of lowered forecast resolution, which

means that the capacity to issue case-dependent forecasts is lowered. The daily variability in the wind and

PV power output were shown to be anti-correlated, which is beneficial in terms of forecasting aggregated

time series. Although the power sources show slightly anti-correlated characteristics in terms of the CRPS

and variability, it was also found that the PV forecasts being insensitive to the increasing variability of

wind power production. Finally, the results indicate that a pure PV park yield the highest revenues on the

day-ahead market, which is explained by the small amount of PV to the total net generation in Sweden.

However, when forecasting aggregated time series in a co-located park, the imbalance costs are lowered as

compared to the individual power sources. This is explained by better accuracy, reliability and sharpness

from co-located forecasts as compared to forecasts from individual power sources.
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Mikael Bergkvist, Mårten Grabbe, and Rafael Waters. Variability assessment and forecasting of re-

newables: A review for solar, wind, wave and tidal resources. Renewable and Sustainable Energy

Reviews, 44:356–375, 2015. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2014.12.019. URL

https://www.sciencedirect.com/science/article/pii/S1364032114010715.

[5] Warren Katzenstein, Emily Fertig, and Jay Apt. The variability of interconnected wind plants. En-

ergy Policy, 38(8):4400–4410, 2010. ISSN 0301-4215. doi: https://doi.org/10.1016/j.enpol.2010.03.069. URL

https://www.sciencedirect.com/science/article/pii/S0301421510002594.

[6] Matthew Lave, Jan Kleissl, and Ery Arias-Castro. High-frequency irradiance fluctuations and geographic smooth-

ing. Solar Energy, 86(8):2190–2199, 2012. ISSN 0038-092X. doi: https://doi.org/10.1016/j.solener.2011.06.031. URL

https://www.sciencedirect.com/science/article/pii/S0038092X11002611. Progress in Solar Energy 3.

[7] J. Jurasz, F. A. Canales, A. Kies, M. Guezgouz, and A. Beluco. A review on the complementarity of renewable energy

sources: Concept, metrics, application and future research directions. Solar Energy, 195(April 2019):703–724, 2020. ISSN

0038092X. doi: 10.1016/j.solener.2019.11.087. URL https://doi.org/10.1016/j.solener.2019.11.087.

[8] WindEurope. Renewable hybrid power plants: Exploring the benefits and market opportunities, 2020.

[9] Oskar Lindberg, Johan Arnqvist, Joakim Munkhammar, and David Lingfors. Review on power-production modeling of hy-

brid wind and pv power parks. Journal of Renewable and Sustainable Energy, 13(4):042702, 2021. doi: 10.1063/5.0056201.

URL https://doi.org/10.1063/5.0056201.

28

                  



[10] Katherine Dykes, Jennifer King, and Nicholas DiOrio. Research opportunities in the physical design optimization of hybrid

power plants: Preprint. In 4th International Hybrid Power Systems Workshop, 2019.

[11] Lennart Petersen, Florin Iov, German Claudio Tarnowski, Vahan Gevorgian, Przemyslaw Koralewicz, and Daniel Ioan

Stroe. Validating performance models for hybrid power plant control assessment. Energies, 12(22), 2019. ISSN 19961073.

doi: 10.3390/en12224330.

[12] Kaushik Das, Anatole Louis Theodore Philippe Grapperon, Poul E. Sørensen, and Anca D. Hansen. Op-

timal battery operation for revenue maximization of wind-storage hybrid power plant. Electric Power Sys-

tems Research, 189:106631, 2020. ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2020.106631. URL

https://www.sciencedirect.com/science/article/pii/S037877962030434X.

[13] Mark Ahlstrom, Erik Ela, Jenny Riesz, Jonathan O’Sullivan, Benjamin F. Hobbs, Mark O’Malley, Michael Milligan, Paul

Sotkiewicz, and Jim Caldwell. The evolution of the market: Designing a market for high levels of variable generation.

IEEE Power and Energy Magazine, 13(6):60–66, 2015. doi: 10.1109/MPE.2015.2458755.

[14] Daniel Vázquez Pombo, Florin Iov, and Daniel-Ioan Stroe. A novel control architecture for hybrid power plants to provide

coordinated frequency reserves. Energies, 12(5), 2019. ISSN 1996-1073. doi: 10.3390/en12050919.

[15] Rujie Zhu, Kaushik Das, Poul Sørensen, and Anca Hansen. Energy management of hybrid power plants in balancing

market. 6th Hybrid Power Systems Workshop, 2022. [https://doi.org/10.1049/icp.2021.2634].

[16] IEA. Iea wind tcp task 50: Hybrid power plants. 21st Wind and Solar Integration Workshop, 2022. [Accessed: 2022-10-26].

[17] David Ludwig, Christian Breyer, A. A. Solomon, and Robert Seguin. Evaluation of an onsite integrated hybrid pv-wind

power plant. AIMS Energy, 8(5):988–1006, 2020. doi: 10.3934/energy.2020.5.988.

[18] Oskar Lindberg and David Lingfors. Oversizing co-located wind and solar parks to increase the capacity factor. 21st Wind

and Solar Integration Workshop, 2022.

[19] Qian Long, Rujie Zhu, Kaushik Das, and Poul Sørensen. Interfacing energy management with supervisory control for

hybrid power plants. 20th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well

as on Transmission Networks for Offshore Wind Power Plants (WIW 2021), 2022. [https://doi.org/10.1049/icp.2021.2634].

[20] Stefano Alessandrini and Tyler McCandless. The schaake shuffle technique to combine solar and wind power

probabilistic forecasting. Energies, 13(10), 2020. ISSN 1996-1073. doi: 10.3390/en13102503. URL

https://www.mdpi.com/1996-1073/13/10/2503.

[21] Sue Ellen Haupt, Tyler C. McCandless, Susan Dettling, Stefano Alessandrini, Jared A. Lee, Seth Linden, William Petzke,
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