

Regression Markets for Energy Systems Operation

Liyang Han | Technical University of Denmark

15 June 2022 | Manchester

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864337

Acknowledgements

Joint work with

Pierre Pinson (DTU) and Jalal Kazempour (DTU)

Main collaborators:

• Ricardo Bessa (INESCTEC) and Carla Gonçalves (INESCTEC)

Objectives

We would like to propose a regression market that

- Encourages data exchange that helps improve the forecasting tasks of the data buyers while providing financial compensation for the data sellers;
- Allocates the payments based on the contribution of each seller's data to the task of the buyers.
- Takes into account both in-sample and out-of-sample improvements of the forecasting task.

Motivating Case – Wind Forecasting

Motivating Case – Wind Forecasting

Motivating Case – Wind Forecasting

Data Market under a Regression Framework

 $i \in \mathcal{B} = \{1, 2, \dots, b\}, j \in \mathcal{S} = \{1, 2, \dots, s\}$

STEP 1. Buyer shares analytics task with central market operator

Buyer B_i has an **analytics task**, in the form of a **regression with linear parameters** with an eventual **forecasting** job

 x_i : own data, $y_i \in \mathbb{R}^T$: forecasting target of length T, β_i : regression coefficients, ϕ_i : willingness to pay.

In-sample mean squared error (MSE) to measure losses: $L_i = \phi_i \frac{1}{\tau} || \mathbf{y}_i - \mathbf{x}_i \boldsymbol{\beta}_i ||_2^2$

$$\Rightarrow \boldsymbol{\beta}_i = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \|\boldsymbol{y}_i - \boldsymbol{x}_i \boldsymbol{\beta}\|_2^2.$$

STEP 2. Sellers share data and reservation to sell with central market operator

Seller S_i offers **additional data** D_i into the data market, which include features d_i :

 $d_i \in \mathbb{R}^T$: seller's offered feature of length T.

PMAPS 2022 – Special Session Smart4RES

STEP 3. Central market operator updates regression

Given the buyer's **analytics task** and the **additional data** from sellers, the data market operator computes β_{S} and L_{S} :

 $\beta_{\mathcal{S}}$: regression coefficients with additional data from the sellers, $L_{\mathcal{S}}$: losses with additional data from the sellers.

Recall buyer **losses**:
$$L_{\mathcal{S}} = \phi_{i\frac{1}{T}} \| \mathbf{y}_{i} - \mathbf{x}_{\mathcal{S}} \boldsymbol{\beta}_{\mathcal{S}} \|_{2}^{2}$$
, where $\mathbf{x}_{\mathcal{S}} = [\mathbf{x}_{i} \ \mathbf{d}_{1} \ \dots \ \mathbf{d}_{\mathcal{S}}]$. $\Rightarrow \boldsymbol{\beta}_{\mathcal{S}} = \operatorname{argmin} \| \mathbf{y}_{i} - \mathbf{x}_{\mathcal{S}} \boldsymbol{\beta} \|_{2}^{2} \rightarrow OLS$?
Or $\boldsymbol{\beta}_{\mathcal{S}} = \operatorname{argmin} \{ \phi_{i\frac{1}{T}} \| \mathbf{y}_{i} - \mathbf{x}_{\mathcal{S}} \boldsymbol{\beta} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1} \}$ - Lasso Regression

STEP 4. Central market operator determines buyer's payment

The data market operator evaluates the **reduced losses** of the buyer, which determines the **total payment** to the sellers:

$$p_i = L_i - L_S.$$

STEP 5. Central market operator allocates the payment to sellers

then **allocates the payment** to the sellers based on certain rules^[1]. It nees to be **Budget Balanced**:

$$p_i = \sum_{j \in \mathcal{S}} r_j$$

[1] P. Pinson, L. Han, and J. Kazempour, "Regression markets and application to energy forecasting," in TOP, in press, May 2022, doi: 10.1007/s11750-022-00631-7. [Online]. Available: <u>https://link.springer.com/article/10.1007/s11750-022-00631-7</u>

Recall the loss function of B_i with **own features** without the data market is

$$L_i(\boldsymbol{\beta}_i) = \phi_i \frac{1}{T} \|\boldsymbol{y}_i - \boldsymbol{x}_i \boldsymbol{\beta}_i\|_2^2$$

And the loss function of B_i with **own features and support features** from a set of sellers $S(j \in S)$ is

$$L_{\mathcal{S}}(\boldsymbol{\beta}_{\mathcal{S}}) = \phi_i \frac{1}{T} \|\boldsymbol{y}_i - \boldsymbol{x}_{\mathcal{S}} \boldsymbol{\beta}_{\mathcal{S}}\|_2^2$$

Therefore, the **total payment** of B_i can be simply defined as the **value of cooperation** of grand coalition S

$$p_i = v(\mathcal{S}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{S}}(\boldsymbol{\beta}_{\mathcal{S}})$$

Given $p_i = v(S) = L_i(\boldsymbol{\beta}_i) - L_S(\boldsymbol{\beta}_S)$

We define the value of each **coalition** $\mathcal{J} \subseteq \mathcal{S}$ as

 $v(\mathcal{J}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{J}}(\boldsymbol{\beta}_{\mathcal{J}})$ where, $L_{\emptyset}(\boldsymbol{\beta}_{\emptyset}) = L_i(\boldsymbol{\beta}_i)$, so $v(\emptyset) = 0$

Given $p_i = v(S) = L_i(\boldsymbol{\beta}_i) - L_S(\boldsymbol{\beta}_S)$

We define the value of each **coalition** $\mathcal{J} \subseteq \mathcal{S}$ as

 $v(\mathcal{J}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{J}}(\boldsymbol{\beta}_{\mathcal{J}})$ where, $L_{\emptyset}(\boldsymbol{\beta}_{\emptyset}) = L_i(\boldsymbol{\beta}_i)$, so $v(\emptyset) = 0$

where, $L_{\emptyset}(\boldsymbol{p}_{\emptyset}) = L_{i}(\boldsymbol{p}_{i})$, so $V(\emptyset) = 0$

The **Leave-One-Out Payment** for each data seller $j \in S$ can be defined as

 $LOO_{j} = v(\mathcal{S}) - v(\mathcal{S} \setminus \{j\}) = L_{\mathcal{S} \setminus \{j\}} (\boldsymbol{\beta}_{\mathcal{S} \setminus \{j\}}) - L_{\mathcal{S}}(\boldsymbol{\beta}_{\mathcal{S}})$

Advantages:

Computation Tractability

Given $p_i = v(S) = L_i(\boldsymbol{\beta}_i) - L_S(\boldsymbol{\beta}_S)$

We define the value of each **coalition** $\mathcal{J} \subseteq \mathcal{S}$ as

 $v(\mathcal{J}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{J}}(\boldsymbol{\beta}_{\mathcal{J}})$ where, $L_{\emptyset}(\boldsymbol{\beta}_{\emptyset}) = L_i(\boldsymbol{\beta}_i)$, so $v(\emptyset) = 0$

The **Leave-One-Out Payment** for each data seller $j \in S$ can be defined as

 $LOO_{j} = v(\mathcal{S}) - v(\mathcal{S} \setminus \{j\}) = L_{\mathcal{S} \setminus \{j\}} (\boldsymbol{\beta}_{\mathcal{S} \setminus \{j\}}) - L_{\mathcal{S}}(\boldsymbol{\beta}_{\mathcal{S}})$

Advantages:

Computation Tractability

Caveat: the Leave-One-Out Payment does NOT guarantee a balanced budget, leading to

 $\sum_{i=1}^{n} LOO_j \neq p_i \quad (e.g., two data sellers that provide identical information)$

Smart4RES

Cooperative Game Based Payment Allocation

Given $p_i = v(S) = L_i(\boldsymbol{\beta}_i) - L_S(\boldsymbol{\beta}_S)$

We define the value of each **coalition** $\mathcal{J} \subseteq \mathcal{S}$ as

 $v(\mathcal{J}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{J}}(\boldsymbol{\beta}_{\mathcal{J}})$

where , $L_{\emptyset}(\boldsymbol{\beta}_{\emptyset}) = L_{i}(\boldsymbol{\beta}_{i})$, so $v(\emptyset) = 0$

The **Shapley Value** for each data seller
$$j \in S$$
 is defined as

$$\phi_j = \sum_{\mathcal{J} \subseteq S, j \in \mathcal{J}} \frac{(|\mathcal{J}| - 1)! (|S| - |\mathcal{J}|)!}{|S|!} [v(\mathcal{J}) - v(\mathcal{J} \setminus \{j\})]$$

Advantages:

- Budget Balance
- Symmetry
- Zero-Element

Smart4RES

Cooperative Game Based Payment Allocation

Given $p_i = v(S) = L_i(\boldsymbol{\beta}_i) - L_S(\boldsymbol{\beta}_S)$

We define the value of each **coalition** $\mathcal{J} \subseteq \mathcal{S}$ as

 $v(\mathcal{J}) = L_i(\boldsymbol{\beta}_i) - L_{\mathcal{J}}(\boldsymbol{\beta}_{\mathcal{J}})$ where, $L_{\emptyset}(\boldsymbol{\beta}_{\emptyset}) = L_i(\boldsymbol{\beta}_i)$, so $v(\emptyset) = 0$

The **Shapley Value** for each data seller
$$j \in S$$
 is defined as

$$\phi_j = \sum_{\mathcal{J} \subseteq S, j \in \mathcal{J}} \frac{(|\mathcal{J}| - 1)! (|S| - |\mathcal{J}|)!}{|S|!} [v(\mathcal{J}) - v(\mathcal{J} \setminus \{j\})]$$

Advantages:

- Budget Balance
- Symmetry
- Zero-Element

Caveat: The Shapley Value is computationally **intractable**, and it assumes no **revenue threasholds** from the sellers' perspective. \rightarrow **Lasso regression**^[2]!

[2] L. Han, P. Pinson, and J. Kazempour, "Trading Data for Wind Power Forecasting: A Regression Market with Lasso Regularization," *accepted for PSCC 2022*, pp. 1-13, 2021. [Online]. Available: <u>https://arxiv.org/abs/2110.07432</u>

Case Studies (Synthetic Data)

Fig. 1. Temporal evolution of the regression parameters and the corresponding payments for the various features of the support agents over the period considered.

Case Studies (South Carolina, USA, 7 years)

payment

a1

a2

a3

a4

a5

a6

a7

a8

a9

(a) Batch regression market

(b) Out-of-sample regression market

a5

agent

a6

a7

a8

a9

Fig. 2. Cumulative revenues of all agents in both batch and out-of-sample regression markets for a span of 10,000 time instants.

\$10,000

\$7,500

\$5,000

\$2,500 -

\$0

a2

a1

a3

a4

revenue

grant agreement No 864337

