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Introduction

Objective: Probabilistic prediction of the minute-scale variability of RES plants
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Introduction

Motivation: Prediction of high-resolution RES variability has multiple potential
uses, e.g.:

• Explanatory variable for probabilistic RES forecast at intraday horizons [AM13]
• Reserve Sizing, Unit Commitment
• Flexible dispatch margin for RES integration [CA15]
• Optimal scheduling of storage combined with RES
• Reliable trading of ancillary services by RES [HTD+22]

Simon Camal MINES Paris - PMAPS 2022

Forecasting the high-resolution variability of renewable production 5 / 23



Outline

1 Introduction

2 Research problem

3 Conclusions

4 References

Simon Camal MINES Paris - PMAPS 2022

Forecasting the high-resolution variability of renewable production 6 / 23



High-resolution weather forecast

Numerical Weather Predictions (NWP) have km-scale spatial resolution.
But NWP ensembles have minute-scale time steps.
Potential for variability forecast with ensembles in contexts where parametrization
is sufficient.

Figure 1: NWP grid with parametrization of physical processes
(MeteoFrance)

Figure 2: Wind speed observed (blue), average prediction of
ensembles (black) and individual ensemble members (grey) (MeteoFrance)
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Large Eddy Simulation (LES) resolves turbulence, clouds and surface.
Weather forecasts at 100 m spatial resolution and temporal resolution ∆t of 30
seconds.

Figure 3: LES grid (MeteoFrance) Figure 4: LES simulation at wind farm level (Whiffle)
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Methodology: Model the variability of power forecast

RES variability: rolling standard deviation of RES production σy , on a moving
window defined by the use case (e.g. 5-10 min)

Figure 5: Observed RES production (black) and 10-min rolling standard deviation (blue), for 1 wind farm
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Methodology: Model the variability of power forecast

Aim: Forecast a quantile of rolling RES standard deviation σ̂
(τ)
y from a weather

forecast (here wind speed).
Steps:

1 High-resolution weather forecast at one or multiple RES sites (here from LES)
2 Derive rolling variability weather forecast
3 Convert to rolling forecast of RES production variability

Evaluation: Minimize the quantile score (QS) of RES variability
Benchmark: RES variability quantile forecast from low-resolution NWP
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Methodology: Derive variability of weather forecast

Analytic benchmark: high quantile of wind speed rolling standard deviation σx
proportional to rolling mean wind speed µx [LYT+14].
Input: µx Rolling mean of low-resolution wind speed forecasts (from NWP)
Output: σ̂(τ)

x , quantile of rolling standard deviation of wind speed

σ̂
(τ)
x ,∆t = TIµx ,∆t , τ = 90% (1)

where TI is the Turbulence Intensity, a parameter standardized in IEC 61400-1.
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Methodology: Derive variability of weather forecast

Quantile regression based on LES wind speed forecast over N training samples.
Input: Rolling mean wind speed forecasts µ̂l

x over all turbine locations l ∈ L in LES
Output: σ̂(τ)

x , quantile of rolling standard deviation of wind speed

min
αl ∈ R+

∑
i∈N

(σ̂x ,i − σ̂
(τ)
x ,i ).(τ − 1{σ̂x ,i < σ̂

(τ)
x ,i }) | σ̂

(τ)
x ,i =

∑
l∈L

αl µ̂
l
x ,i (2a)

LES simulates spatial variability between turbines of a wind farm
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Methodology: Conversion to RES variability forecast

The RES variability forecast is obtained by propagating the rolling wind speed and
variability forecast through the turbine power curve.
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Case study

Day-ahead variability forecast for wind farms in a Greek Island (Rhodes)
• 1 year production data from 4 farms at 1 min resolution (HEDNO)
• LES on the entire Rhodes island at 30min resolution (WHIFFLE)
• Resolution of rolling forecast ∆t = 10 min
• Nominal quantile value of variability forecast τ = 90%
• Forecasting horizon: 24h-48h (aligned on the LES forecasting horizon)
• Training - Testing split of the RES variability forecast model: 50 % - 50 % by
alternate days in 2018
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Case Study

LES produced by WHIFFLE at 30s resolution, with nested domains for each wind
farm, and boundary conditions from ECMWF NWP.

Figure 6: LES output on Rhodes, boxes indicate wind farm domains (source: Whiffle)
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Results

The high-resolution variability forecast (hi-rez) improves the QS compared to the
low-resolution counterpart (low-rez), with differences between sites.

Figure 7: Quantile score for the 4 wind farms (AE, DA, DI, EW)
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Vizualisation

The minute-scale variability forecast is complementary to the probabilistic power
forecast.
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Figure 8: Variability forecast at high-resolution (green) and low-resolution (brown). 90% Prediction interval of power forecast in grey
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Conclusions

High-resolution weather forecast provide useful input to RES variability forecast.
• Higher forecasting performance is obtained with LES-based variability
compared to parametrized evaluation based on NWP

• Coherent variability forecasts can be obtained at a regional scale, but
computational effort of LES is high and biases are important.

• Forecasting end-users may need a different format of variability index [AM13]
or ramp quantification [Bos12]

• The value of the variability forecast should be demonstrated in a power system
application with multiple temporal resolution e.g. bidding of energy and
reserve as in [HTD+22]
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Thanks!
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