

Seamless probabilistic weather forecasts for renewable energy prediction

Ivana ALEKSOVSKA, Laure RAYNAUD | Météo-France

15 June 2022

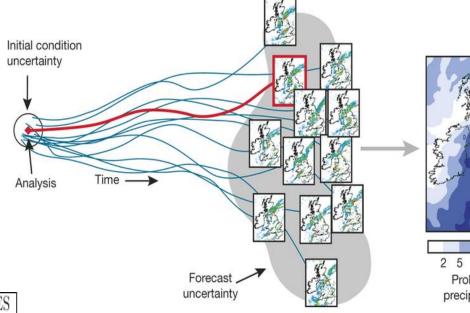
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864337

Motivation for seamless weather forecast

- Renewable energy sector is highly dependent on weather conditions
 - Reliable weather forecast = accurate energy production -> Need to account for weather forecast uncertainty;
 - SMART4RES : development of next generation weather forecasting solutions with a proper representation of forecast uncertainty.
- How to account for weather forecast uncertainty in renewable energy systems?
 - Use probabilistic forecasts from Ensemble Prediction Systems (EPS);
 - Different EPSs available for different spatio-temporal scales;

⇒ How to combine the different EPSs in a single seamless ensemble that covers ranges from nowcast to several days ahead ?

- Overview of Ensemble Prediction System
- Seamless forecast methodology
- Performance and verification Criteria
- Results
- Conclusions
- References

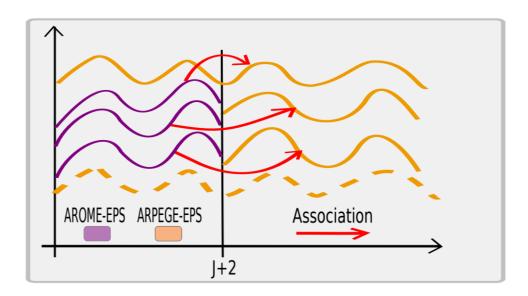



Footer

Ensemble Prediction System (EPS)

- Estimate the probability distribution of future atmospheric states
- Multiple perturbed weather forecasts (called « members »)
 - Different initial & boundary conditions, model parameters
- EPS used at Météo-France
 - AROME-EPS
 - ARPEGE-EPS

Arome-EPS	Ref	Smart4RES	Arpège-EPS	Ref	Smart4RES
Horizontal resolution	2.5 km	1.3km		$7.5 \mathrm{km}$	$5 \mathrm{km}$
Output frequency	1h	5 min		1h	$4 \min$
Size	16	25		35	35
Lead time	51h	51h		96h	96h
LBCs	Arpège-EPS ref	Arpège-EPS Smart			



Objectives of the seamless ensemble forecast

- Different EPSs are used for different forecast ranges
- Combination into a single seamless forecast has 2 objectives :
 - Ensuring smooth transitions (without temporal discontinuities)
 - Providing enhanced meteorological performance with respect to the reference EPS

Seamless ensemble forecast method

- Seamless design from Aleksovska et al. (2021)
 - Continuous 4 day forecast built from AROME-EPS and ARPEGE-EPS
 - Use AROME-EPS members only over o-51h
 - Over 51-96h, chose ARPEGE-EPS members as follows :
 - Calculate the Dynamic Time Warping (DTW) distance $d_{ij}\,$ between the members over a period W
 - Find the optimal bijective match between two samples Hungarian Method (HU)

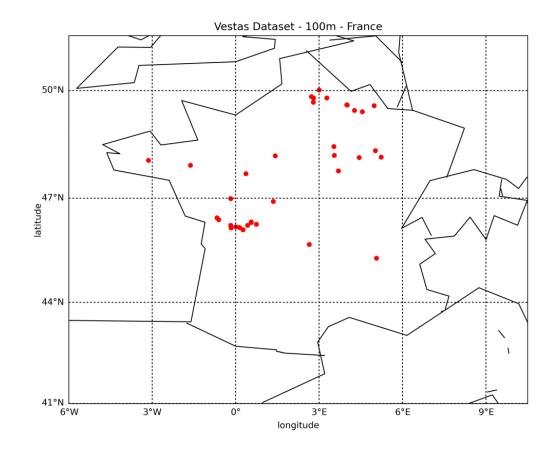
$$\mathbf{j}^* = \arg_j \min\left\{\sum_{i=1}^N d_{ij}\right\}$$

Performance and verifications criteria

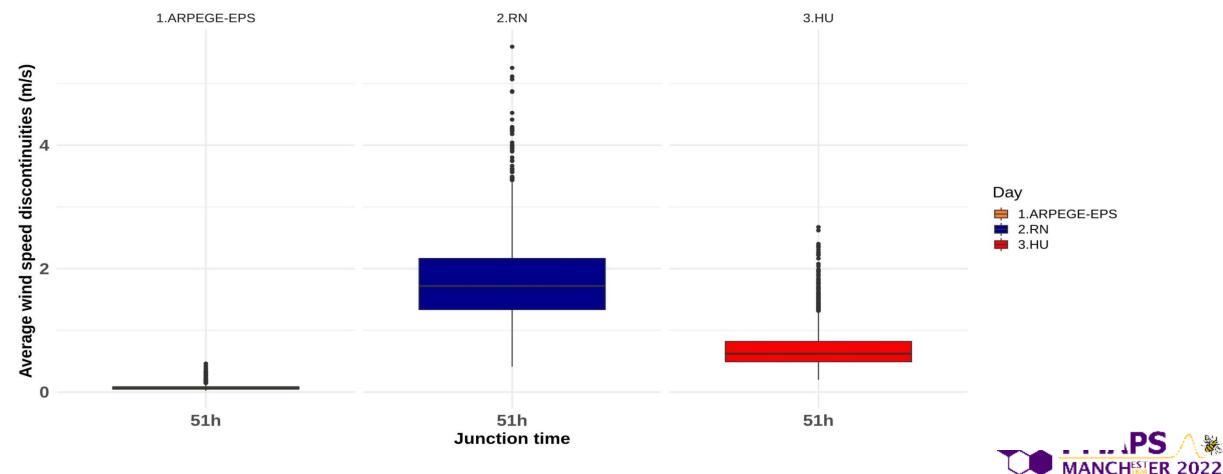
• Ensuring smooth transitions : temporal continuity

$$\Delta = \sum_{i=1}^{N} |fi(51h) - fi(51h05m)|$$

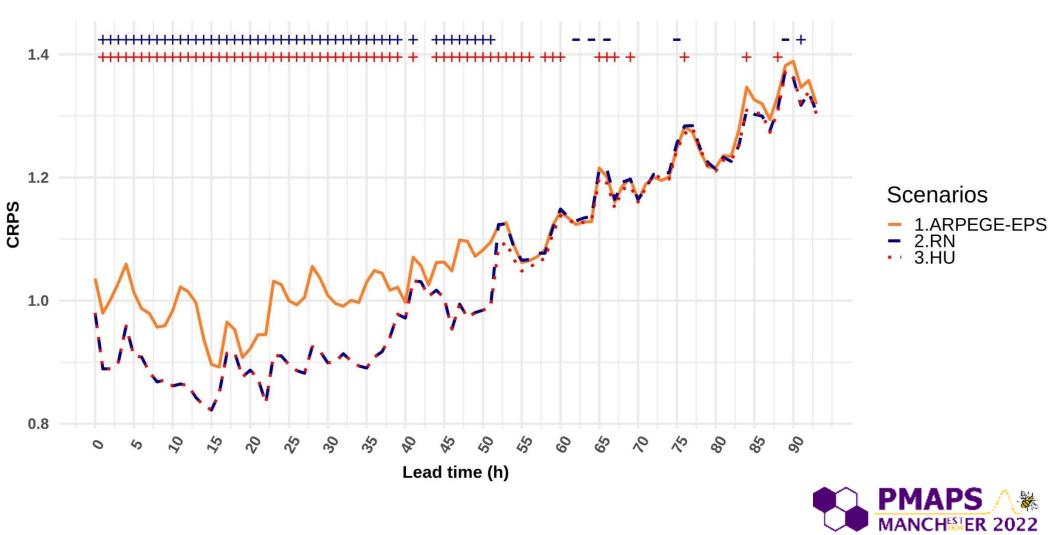
- Ensuring meteorological verification : Continuous Ranked Probability Score (CRPS)
 - Distance between the observation and forecast distributions


$$CRPS = (F, Fo) \int_{R} (F(x) - Fo)^2 dx.$$

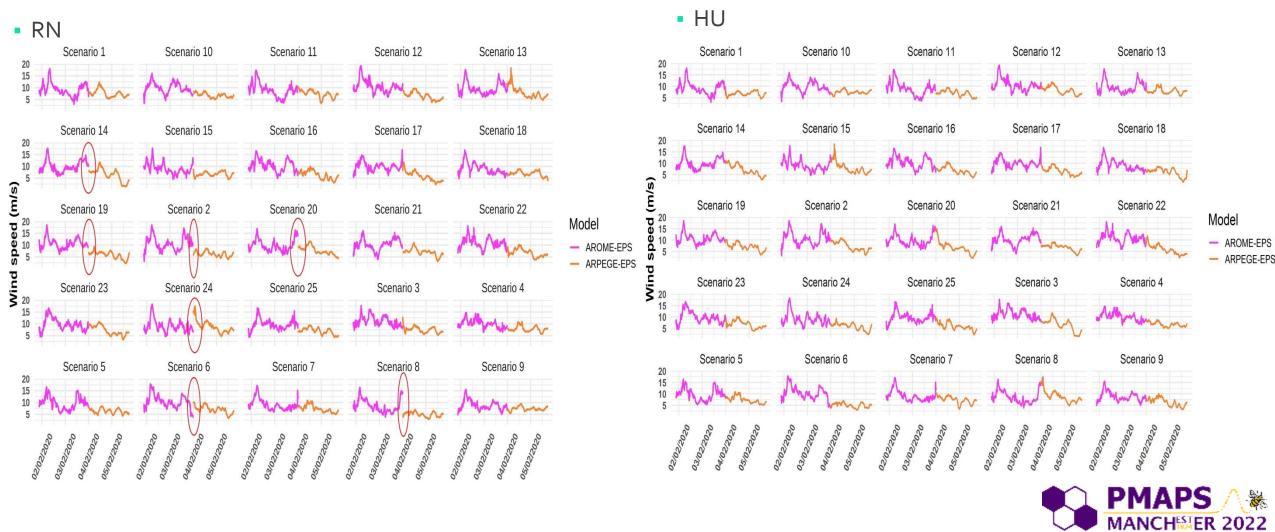
Experimental setup


- Wind speed forecast at 100m for February & March 2020
- Seamless forecast evaluation :
 - Observed wind speed measurements 100m (anemometers nacelles)
 - 36 wind turbines (VESTAS)
- Benchmark evaluation : Random selection of ARPEGE merging members without repetition (RN).

• The Hungarian method is much better than the random association to minimize discontinuity



CRPS


 Using AROME-EPS for short lead times improves ARPEGE forecasts

 The Hungarian method outperforms the random association up to 15 hr after the junction

Examples of seamless forecast

- Two global and regional EPSs, covering different spatio-temporal scales, are combined to provide seamless weather forecasts of the wind speed required in wind turbine energy production models.
- A new approach to design seamless ensemble forecasts from the combination of the two EPSs has been developed.
- The proposed method takes advantage of the increased performance of high-resolution AROME-EPS for short lead times, while ensuring a smooth transition towards the larger-scale ARPEGE-EPS for longer lead times.

- I. Aleksovska, L. Raynaud, R. Faivre, F. Brun and M. Raynal, "Design and evaluation of calibrated and seamless ensemble weather forecasts for crop protection applications", Weather and Fcst., vol. 36, pp. 1329—1342, 2021 <u>https://doi.org/10.1175/WAF-D-20-0128.1</u>
- D.J. Berndt and J. Clifford, "Using dynamic time warping to find patterns in time series", KDD workshop, vol.10, n.16, pp.359–370, 1994 https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
- H. W. Kuhn, "The Hungarian method for the assignment problem", Naval Resch. logistics quarterly, vol. 2, n. 1-2, pp. 83–97, 1955 <u>https://doi.org/10.1002/nav.3800020109</u>

grant agreement No 864337

