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Context and Motivation

Data-driven decisions in two steps:
• Forecast: estimation of uncertain

parameters (renewable production).
• Optimize: Derive an optimal set of

actions (prescriptions).
Issues:
• Forecast accuracy 6= forecast value
• Each parameter requires a separate

forecasting model
• Impact of data on decisions is obscure

Energy analytics tools

machine
learning

grid digi-
talization

renewable
integration

large
data sets
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Objective

Closing the loop between forecasting and optimization to improve prescriptive perfor-
mance in renewable trading applications.

Feature data x
Renewable production

Market quantities

Z

z∗

Trading
actions

Forecasts of y

Forecasting Optimization
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Conditional Stochastic Optimization

Stochastic optimization problems with contextual information (or prescriptive analytics
problem):
• Uncertain parameters Y : renewable production, market quantities
• Associated features X : weather forecasts, historical market data.
• Vector of decisions z : energy offers.

The goal is to minimize:

v = min
z∈Z

EQ[c(z ;Y )|X = x ] = min
z∈Z

Ey∼Qx
[c(z ;Y )] (1)

where Z the feasible set, c(·) the cost function, Q the joint distribution of (X ,Y ), x a
new observation of X , and Qx predictive density of Y conditioned on x .
Types of problems: constrained, multi-temporal, single-stage.
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How to solve this problem

Training data set: {(yi , xi )}n
i=1

Forecast, then optimize (FO): train forecasting model f : X −→ Y, infer predictive
densities (conditional expectation), solve stochastic (deterministic) problem.
Predictive Prescriptions: find similar observations, solve a weighted Sample Average
Approximation (SAA) conditioned on x [HPB10, BK20]

ẑ(x) = arg min
z∈Z

n∑
i=1

ωn,i (x)c(z ; yi ), (2)

ωn,i (x): weights from local learning algorithms, e.g., kNN and decision trees.
• If ωn,i (x) are derived by training for prediction: equivalent to FO with probabilistic

forecasts.
• Proposed: derive ωn,i (x) by directly minimizing downstream costs
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Integrating Forecasting-Optimization

Search over functions f : X → Y to minimize in-sample decision costs using a weighted
SAA of the original problem. Formally:

min
f ∈ F , z f (xi ) ∈ Z

∑
i∈[n]

c(z f (xi ); yi ) (3a)

s.t.

z f (xi ) = arg min
z∈Z

∑
j∈[n]

ωf
n,j (xi )c(z ; yj ) ∀i ∈ [n], (3b)

where [n] := {1, . . . , n}.
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Prescriptive Trees with Random Splits

Prescriptive trees: trees that output prescriptions rather than predictions. Following
CART [BFSO84], apply recursive binary splits:

min
j ,s

min
z1∈Z

∑
i∈R1

c(z1; yi ) + min
z2∈Z

∑
i∈R2

c(z2; yi )

 . (4)

Inner min problems in (4) correspond to the SAA solution of each partition.
No analytical solution for constrained problems → Training is too costly!
Train ensemble with random splits [GEW06] to reduce costs:

1 At each node of each tree, sample a subset of K features from X .
2 For each feature, sample a candidate split point.
3 Solve (4) for each candidate split, apply recursively.
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Explainability: Measuring prescriptiveness

Q: What is the impact of features on prescriptive performance?
A: Feature importance for predictive accuracy → adapt to measure prescriptiveness.
• Mean Decrease Impurity (MDI): For each feature, measure the expected cost

reduction when it is used at node splits (in-sample, no computational cost).
• Permutation Importance: Shuffle feature observations, derive prescriptions, find

expected cost increase (out-of-sample, high computational cost).
Other ideas: Shapley value, LIME (for single prescription), etc.
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Illustrative example

Toy newsvendor problem: cost function c(z ;Y ) = 2(Y − z)− + 10(z − Y )+, uncertain
demand Y = g(X ) + ε, X single feature, ε noise.
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Case studies

• RES trading: trading as a price-taker in a DA market, under single-/dual-pricing
balancing mechanism.
• RES trading with storage: extend the above to include storage, co-optimize DA

offers and storage control policy [SCMK22].
• Clearing DA market: stochastic market clearing with network constraints, test on

IEEE-24 system
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RES trading-Problem formulation

Objective: Balance trading performance (prescriptive) and forecast accuracy
(predictive), jointly consider uncertainty in both energy and regulation penalties.

min
poffer

E

(1− k)(−ρsingle/dual)︸ ︷︷ ︸
prescriptive

+ k
∥∥∥pE − poffer

∥∥∥2

2︸ ︷︷ ︸
predictive


s.t. pmin ≤ poffer ≤ pmax ,

where ρsingle/dual the profit function, k a design parameter controls the trade-off. For
k = 0 retrieve “0-1” or newsvendor (depends on market design) loss, for k = 1 retrieve
standard regression loss.
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RES trading-Results

Illustrative results for a market with a single-price balancing mechanism:
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RES trading-Explainability

For k = 0, derive optimal trading offer:

• Single-price: offer is either 0 or 1,
only regulation costs matter.
• Dual -price: offer is the optimal

energy quantile given expected
regulation costs.

For k = 1:
• Standard regression, offer

expected production.

Norm. prescriptive feature importance.
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RES trading with storage-Problem formulation

Objective: Trade-off between DA arbitrage actions and minimizing imbalance volume
during real-time operation.
Linear decision rules for recourse actions: p̃ = p̂ + Dξ, where p̂ the scheduled DA
decisions, D lower-triangular coefficient matrix, ξ uncertainty (forecast error).

min
P

E

[
T∑

t=1

−(1− k)πda
t poffer

t︸ ︷︷ ︸
DA arbitrage

+ k
∥∥∥poutput

t − poffer
t

∥∥∥2

2︸ ︷︷ ︸
real-time control

]
(5a)

s.t. Offer limits, state transition function, storage technical constraints, (5b)
0 ≤ p̃ ≤ p ∀ξ ∈ Ξ (5c)

Uncertainty set Ξ changes dynamically based on forecasts/ weight samples.
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RES trading with storage-Results
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Conclusions

Summary:
• Integrated forecasting-optimization to improve prescriptive performance in

renewable trading applications.
• Explainability of decisions: impact of feature data on decision costs.
• Outperforms the “forecast, then optimize” modeling approach without requiring

multiple forecast models.
• Market price forecasting relatively more important for single- than dual-price

balancing mechanism.
Future work:
• Moving from batch to online learning setting.
• Interpretable model for data-driven decisions (optimal trees).
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