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Abstract. Semantic segmentation of ground-based all-sky
images (ASIs) can provide high-resolution cloud cover-
age information of distinct cloud types, applicable for
meteorology-, climatology- and solar-energy-related appli-
cations. Since the shape and appearance of clouds is variable,
and there is high similarity between cloud types, a clear clas-
sification is difficult. Therefore, most state-of-the-art meth-
ods focus on the distinction between cloudy and cloud-free
pixels without taking into account the cloud type. On the
other hand, cloud classification is typically determined sepa-
rately at the image level, neglecting the cloud’s position and
only considering the prevailing cloud type. Deep neural net-
works have proven to be very effective and robust for seg-
mentation tasks; however they require large training datasets
to learn complex visual features. In this work, we present
a self-supervised learning approach to exploit many more
data than in purely supervised training and thus increase the
model’s performance. In the first step, we use about 300 000
ASIs in two different pretext tasks for pretraining. One of
them pursues an image reconstruction approach. The other
one is based on the DeepCluster model, an iterative proce-
dure of clustering and classifying the neural network output.
In the second step, our model is fine-tuned on a small labeled
dataset of 770 ASIs, of which 616 are used for training and
154 for validation. For each of them, a ground truth mask was
created that classifies each pixel into clear sky or a low-layer,
mid-layer or high-layer cloud. To analyze the effectiveness

of self-supervised pretraining, we compare our approach to
randomly initialized and pretrained ImageNet weights using
the same training and validation sets. Achieving 85.8 % pixel
accuracy on average, our best self-supervised model outper-
forms the conventional approaches of random (78.3 %) and
pretrained ImageNet initialization (82.1 %). The benefits be-
come even more evident when regarding precision, recall
and intersection over union (IoU) of the respective cloud
classes, where the improvement is between 5 and 20 percent-
age points. Furthermore, we compare the performance of our
best model with regards to binary segmentation with a clear-
sky library (CSL) from the literature. Our model outperforms
the CSL by over 7 percentage points, reaching a pixel accu-
racy of 95 %.

1 Introduction

Clouds constantly cover large fractions of the globe, influ-
encing the amount of shortwave radiation reflected, trans-
mitted and absorbed by the atmosphere. Therefore, they not
only affect momentarily local temperatures but also play a
significant role in climate change (Rossow and Zhang, 1995;
Rossow and Schiffer, 1999; Stubenrauch et al., 2013). The
actual impact on solar irradiation depends on the properties
of individual clouds and is still a current field of research.
Automatic detection and specification of clouds can thus help
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to study their effects in more detail and to monitor changes
that may be induced by climate change. Moreover, cloud data
is essential for weather forecasts and solar energy applica-
tions. In so-called nowcasting systems for example, short-
wave solar irradiation is forecasted in intra-minute and intra-
hour time frames using ground-based observations. These
forecasts have proven to be beneficial for the operation of
solar power plants (Kuhn et al., 2018) and have the potential
to optimize power distribution of solar energy over electricity
nets (Perez et al., 2016).

Ground-based measurements and satellite measurements
are the two possibilities for continuously observing clouds.
While satellite images cover larger areas, they are also less
detailed. On the other hand, ground-based sky observations
using all-sky imagers have limited coverage, but they can be
obtained in higher temporal and spatial resolution. Therefore,
all-sky imagers represent a valuable complement to satellite
imaging that is being studied increasingly. In the past vari-
ous ground-based camera systems were developed for auto-
matic cloud cover observations (Shields et al., 1998; Long
et al., 2001; Widener and Long, 2004). Furthermore, off-the-
shelf surveillance cameras are frequently utilized (West et al.,
2014; Blanc et al., 2017; Nouri et al., 2019b). They all ob-
serve the entire hemisphere using fish-eye lenses with a view-
ing angle of about 180◦. Thereby, typical cloud heights and
clouds spread over multiple square kilometers can be moni-
tored. In this work we refer to these cameras as all-sky im-
agers and the corresponding images as ASIs.

Usually, there are two tasks most studies distinguish be-
tween. In cloud detection, the precise location of a cloud
within the ASI is sought, whereas cloud specification aims
to provide information about the properties of an observed
cloud. The former is achieved by segmenting the image into
cloudy and cloudless pixels. For the latter, the common ap-
proach is to classify visible clouds into specified categories
of cloud types. Often, classification is based on the 10 main
cloud genera defined by the World Meteorological Organiza-
tion (WMO) (Cohn, 2017). Both tasks are challenging for a
number of reasons. For instance, a clear distinction between
aerosols and clouds is not always possible from image data.
Corresponding to Calbó et al. (2017), clouds are defined by
the visible number of water droplets and ice crystals. In con-
trast, aerosols comprise all liquid and solid particles inde-
pendent of their visibility. Still, the underlying phenomenon
is the same, and there is no clear demarcation between one
and the other. Moreover, cloud fragments can extend mul-
tiple kilometers into their surroundings, mixing with other
aerosols in a so-called twilight zone (Koren et al., 2007).
This absence of sharp boundaries makes precise segmenta-
tion particularly difficult. For classification, high similari-
ties between cloud types and large variations in spatial ex-
tent pose another challenge. Furthermore, the appearances
of clouds are influenced by atmospheric conditions, illumi-
nations and distortion effects from the fish-eye lenses. Fi-
nally, overlapping cloud layers are especially difficult to dis-

tinguish. As a result, many datasets intentionally neglect such
multi-layer conditions or consider the prevailing cloud type
only.

Traditionally, segmentation and classification were ad-
dressed separately. Firstly, both tasks are hard to solve in-
dividually. Secondly, the solution approaches are often very
distinct. Most segmentation techniques rely on threshold-
based methods in color space. One commonly applied mea-
sure is the red–blue ratio (Long et al., 2006) or difference
(Heinle et al., 2010) within the RGB color space. Other meth-
ods include the green channel as well (Kazantzidis et al.,
2012), apply adaptive thresholding (Li et al., 2011) or trans-
form the image into HSI (hue–saturation–intensity) color
space (Souza-Echer et al., 2006; Jayadevan et al., 2015). Also
super-pixel segmentation, graph models and combination of
both have already been studied for threshold-based cloud
segmentation (Liu et al., 2014, 2015; Shi et al., 2017). The
problem with thresholds is that they depend on many fac-
tors, such as sun elevation, a pixel’s relative position to the
sun or horizon, and current atmospheric conditions. To take
these factors into account, clear-sky libraries (CSLs) were in-
troduced (Chow et al., 2011; Ghonima et al., 2012; Chauvin
et al., 2015; Wilbert et al., 2016; Kuhn et al., 2018). CSLs
store historical RGB data from clear-sky conditions, which
are used to compute a reference image of the threshold color
feature (e.g., red–blue ratio). By considering the difference
image from reference and original color features, detection
is more robust.

Apart from manually adjusting thresholds of color fea-
tures, learning-based methods were examined, too. To iden-
tify the most relevant color components, clustering and di-
mensionality reduction techniques were applied (Dev et al.,
2014, 2016). There are also studies on supervised learn-
ing techniques for classifying pixels in ASIs such as neural
networks, support vector machines (SVMs), random forests
and Bayesian classifiers (Taravat et al., 2014; Cheng and
Lin, 2017; Ye et al., 2019). Lately, also deep learning ap-
proaches using convolutional neural networks (CNNs) were
presented (Dev et al., 2019; Xie et al., 2020; Song et al.,
2020). Although, they were trained in a purely supervised
manner using relatively small datasets, the results outperform
threshold-based state-of-the-art methods significantly. This
corresponds to a recent benchmark on cloud segmentation
methods (Hasenbalg et al., 2020). Different threshold-based
methods and a CNN were evaluated in a diverse dataset of
829 manually segmented ASIs. In this comparison the CNN
performed best.

However, most techniques presented in the literature still
focus on binary segmentation and do not differentiate be-
tween cloud types. Until today, cloud classification has
been mainly studied at the image level, independent of the
segmentation approach. Therefore, many datasets contain
cutouts of ASIs (“sky patches”). Others are based on cam-
era images with a smaller field of view, or ambiguous ASIs
were omitted entirely.
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For classification, most approaches are learning-based.
Various classifiers, like k nearest neighbors, support vector
machines and CNNs, have been trained to recognize the de-
picted cloud type (Heinle et al., 2010; Zhuo et al., 2014;
Ye et al., 2017; Zhang et al., 2018). The classes are usually
based on the main cloud genera, sometimes combining visu-
ally similar types.

Recently, the combination of both tasks, leading to seman-
tic segmentation, has been targeted as well. In two studies,
clouds were distinguished in thin and thick clouds (Dev et al.,
2015, 2019), however only considering a small dataset of 32
images of sky patches. To our knowledge, there is only one
work of an extensive segmentation approach, which is based
on 9 cloud genera using 600 labeled ASIs (Ye et al., 2019).
The authors propose to extract and transform a set of features
for generated super-pixels and classify each of them using
an SVM. They evaluate their method by comparing the re-
sults with a CNN that could not achieve the same accuracy.
The problem with deep learning in this case is the lack of
data to learn relevant features and complex data correlations
to distinguish between cloud types. Therefore, we propose
self-supervised pretraining to enable the model to better learn
complex features.

Self-supervised learning is a form of unsupervised learn-
ing that does not require manually created labels but gen-
erates pseudolabels from the data themselves. A model
is trained by solving a pretext task, a pre-designed task
for learning data representations. Afterwards, representation
learning is evaluated in a downstream task. Usually this is
done by applying transfer learning, thus using pretrained
weights as initialization, and fine-tuning a model using a
small labeled dataset. In the field of natural language pro-
cessing, it has become common practice to pretrain a so-
called language model, for instance by predicting the fol-
lowing word in a text (Howard and Ruder, 2018). Lately
also in computer vision a trend of self-supervised learning
can be observed (Radford et al., 2015; Doersch et al., 2015;
Pathak et al., 2016; Noroozi and Favaro, 2016; Lee et al.,
2017; Caron et al., 2018).

In this work we apply two different pretext tasks for self-
supervised learning. The first comprises two sub-tasks to be
solved. One is to fill cropped areas (Pathak et al., 2016), and
the other is to increase the image resolution (Johnson et al.,
2016). We refer to it as the inpainting and super-resolution
(IP–SR) method. Secondly, we apply the winner of a bench-
mark on self-supervised learning for computer vision (Jing
and Tian, 2020), which is called DeepCluster (Caron et al.,
2018). It is based on an iterative process of clustering the
feature outputs from a deep net and using the cluster assign-
ments as pseudolabels for classification.

By applying self-supervised learning, the limits of a purely
supervised approach involving time-consuming and man-
ual creation of ground truth segmentation masks can be
overcome. Consequently, the models can be trained with
many more data, learning more general and complex fea-

tures to distinguish cloud types. To our knowledge, this work
presents the first approach of applying deep learning for se-
mantic cloud segmentation on unlabeled data and a new clas-
sification of clouds into three layers. The remainder of this
work is organized as follows: in Sect. 2, the datasets for su-
pervised fine-tuning and self-supervised pretraining are pre-
sented. Section 3 introduces the model architecture and the
chosen hyperparameters for training. In Sect. 4, the trained
models are evaluated. First, the results of the pretext tasks
are analyzed. Afterwards, the performance of semantic seg-
mentation using self-supervision is compared to a randomly
initialized model and another one pretrained using ImageNet.
Then the results of binary segmentation are compared to the
results of a CSL in the same dataset. Finally, we conclude
our work and provide a brief outlook in Sect. 5.

2 Cloud image datasets

In this section, the data used for training are described. First,
some details about hardware and image properties are given.
Then the image selection for the labeled and the unlabeled
datasets is discussed.

2.1 Image acquisition

All images for training and validating our models were taken
at CIEMAT’s1 Plataforma Solar de Almeria (PSA). It is lo-
cated in the desert of Tabernas (Spain), where atmospheric
conditions are often clear, but the observed cloud formations
are versatile and multi-layered. For our datasets we used a
single all-sky imager based on an off-the-shelf surveillance
camera from Mobotix (model Q25). Images are captured
and stored with a resolution of 4.35 MP. However, they are
cropped and resized to a square format of 512× 512 pixels
for the input of the network. Moreover, the images are pre-
processed by overlaying a camera mask that removes static
objects from the site surroundings. Exposure time is fixed at
160 µs, and no solar occulting devices are installed. The cam-
era is set to take a picture every 30 s from sunrise to sunset,
resulting in approximately 1000 to 1600 images per day.

2.2 Labeled dataset

For differentiating between cloud types, we categorize
clouds into three classes: low-, middle- and high-layer
clouds. They combine the 10 main genera defined by the
WMO (Cohn, 2017) depending on typical cloud base heights.
While low-layer clouds are usually dense and heavy clouds
of liquid water, high-layer clouds are generally thinner and
contain ice particles only. Mid-layer clouds occur in be-
tween and contain a varying quantity of water and ice parti-

1Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas: a Spanish research institute with a focus on energy
and environmental issues.
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cles. Consequently, also the optical characteristics of clouds
within these layers are different. Another reason for classi-
fying clouds into three layers is to detect multi-layer condi-
tions. Particularly for solar irradiation forecasting, it is im-
portant to determine cloud dynamics, which often vary in di-
rection and propagation speed for clouds of different layers.

Our labeled dataset is based on a selection from Hasen-
balg et al. (2020). As the original ground truth segmentation
masks used in Hasenbalg et al. (2020) are only binary, we
revised 669 images and segmented 101 new images from the
same camera, all captured in 2017. In particular images con-
taining thin high-layer clouds and difficult multi-layer condi-
tions were added, such that a more balanced distribution of
cloud types was attained. Furthermore, the selection covers a
large variety of sun elevations and Linke turbidity (TL), rep-
resenting diverse atmospheric conditions. The Linke turbid-
ity coefficient describes the extinction of the solar irradiance
as a multiplier of clean and dry ideal atmospheres, and it can
be derived from the direct normal irradiation (DNI) accord-
ing to Ineichen and Perez (2002). In Fig. 1 an overview of
the dataset is given.

2.3 Unlabeled dataset for self-supervised pretraining

The unlabeled dataset includes ASIs from the whole year
2017 covering a large variety of conditions. To reduce com-
putation effort, the dataset was filtered, neglecting images
that do not contribute much to the learning process. In par-
ticular, images with clear-sky conditions are not very useful.
Therefore, approximately 40 % of all images were sorted out
using reference DNI measurements and a classification pro-
cedure as described in Nouri et al. (2019a). As a result, this
dataset comprises 286 477 ASIs.

3 Experimental setup and implementation

In this section details about the model architectures and hy-
perparameters for supervised segmentation and pretraining
are provided.

3.1 Details of the segmentation model

The architecture of our deep learning model is based on a
U-Net (Ronneberger et al., 2015). A U-Net is a fully convo-
lutional network (Shelhamer et al., 2017) which is composed
of an encoder and a decoder part. The encoder part repre-
sents the usual downsampling path and consists of a standard
ResNet34 (He et al., 2016) in our case. The decoder uses de-
convolutions to upsample the resulting dense representations
to the original input size. The special feature of U-Nets is
the symmetrical, U-shaped structure of the encoder and de-
coder with skip connections in between. These connections
concatenate the output of a directly preceding layer with the
batch-normalized output (Ioffe and Szegedy, 2015) of the re-
spective encoder layer. Hence, feature channels in the de-

coder contain context information which is propagated to
higher resolutions, enabling precise localization of features.
The expansion of the input feature map itself, thus creating
new pixels in between, is achieved by applying the so-called
pixel-shuffle method (Shi et al., 2016; Aitken et al., 2017).
Overall, our decoder consists of multiple blocks performing
input expansion and merging and applying convolutions and
non-linear activations (see Fig. 2). In total there are four of
these blocks and a final output layer producing an output ten-
sor of 5×512×512. The fifth dimension in this tensor is re-
quired for the black outer area of the image produced by the
fish-eye-lens cameras. The cloud class (y) is then predicted
for each pixel (z) by applying the softmax function (σ ) over
the five channels (C = 5) and computing the arg max (index
of maximum in respective vector):

σ(z)j =
ezj∑C
k=1e

zk
j = 1. . .C (1)

y(z)= argmax
j

σ(z)j . (2)

An overview of the entire architecture is shown in Fig. 3.
For data augmentations we apply 90◦ rotations and hori-

zontal and vertical flips with a probability of 75 % for each
batch. In the case of the self-supervised models, the input is
normalized color-channel-wise by subtracting the mean and
dividing by the standard deviation of the unlabeled dataset.
We use standard cross-entropy as loss function and the Adam
optimizer (Kingma and Ba, 2014) with default parameters.
Weights of non-pretrained network parts are initialized with
Kaiming initialization (He et al., 2015), and we apply weight
decay to prevent overfitting. Furthermore, we apply a learn-
ing rate finder and one-cycle policy as described in Smith
(2017, 2018). To obtain faster convergence, we split train-
ing into two phases. In the first phase, the pretrained encoder
part is frozen for 20 epochs using a larger learning rate. Af-
terwards, the entire network is fine-tuned with a smaller one
for another 20 epochs. These values were chosen after exam-
ining the loss curves for the training and validation set for
longer training runs. The network is trained in batches of 4
images using 80 % of the dataset, which leaves 154 images
for validation. All models are trained using a single graphics
processing unit (GPU), a Nvidia GeForce RTX 2080 Super,
and were implemented using fastai v1 (Howard et al., 2018),
a high-level PyTorch (Paszke et al., 2019) API. A summary
of the hyperparameter selection is given in Table 1.

3.2 Pretext tasks for self-supervised learning

As mentioned before, we implemented two methods for self-
supervised learning based on techniques which have proven
to be successful in the literature: IP–SR and DeepCluster
(DC).

For the IP–SR task, the original image is corrupted by in-
serting four black squares and by reducing the resolution by
half. The square boxes are positioned randomly within the
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Figure 1. Distribution of labeled dataset with respect to cloud types, sun elevation (α) and Linke turbidity (TL). For cloud layers (leftmost
plot), the labels describe the total number of ASIs containing respective layers or combinations. For instance, an ASI with low- and high-layer
clouds counts for low-layer, high-layer, and low-layer and high-layer.

Figure 2. Diagram of exemplary inner deconvolution block. Input1
refers to the output from the preceding layer, whereas Input2 indi-
cates a skip connection from the corresponding layer in the encoder
part. After merging, convolutions and non-linear activations (ReLU)
are applied to produce the upsampled output of this block.

Table 1. Hyperparameters for training the segmentation model.

Input size 512× 512
Normalization mean (0.1739, 0.1696, 0.1715)
Normalization SD (0.1376, 0.1297, 0.1175)
Learning rate (frozen) 1e− 3
Learning rate (unfrozen) 1e− 4
Weight decay 1e− 2
Fixed validation 20 %
Batch size 4
Number of epochs (frozen) 20
Number of epochs (unfrozen) 20

ASI and have an edge length of 80 pixels. This size was cho-
sen such that smaller clouds can be occluded, but general

cloudiness conditions can still be determined by human ob-
servers. Furthermore, after downsizing the images they need
to be upscaled again to match the network’s input size, which
is achieved using bilinear interpolation. For inpainting, the
model should learn to predict the missing parts by observ-
ing and recognizing the surrounding conditions. Regarding
super-resolution, the model should learn structural and textu-
ral characteristics of clouds, which helps to better distinguish
cloud types in later segmentation. For this task, the architec-
ture is the same as for the segmentation model (apart from
the output layer), and also the hyperparameters are mostly
equal. The loss is composed of a pixel-wise MAE and a so-
called perceptual loss (Johnson et al., 2016). Due to limited
GPU memory and high computational efforts, batch size was
limited to 2, and training consists of 10 epochs.

The DeepCluster method (Caron et al., 2018) follows the
approach of creating pseudolabels that can be used for clas-
sification. Thereby, the network should learn useful data rep-
resentations that are relevant to recognize objects, or in our
case clouds. It consists of two alternating steps. (1) The out-
put features of the CNN (ResNet34 encoder part) are as-
signed to a predefined number of clusters. For this we ap-
ply a standard k-means algorithm. (2) The resulting clus-
ter assignments can then be used as pseudolabels to solve
a standard classification problem. After each epoch (cluster-
ing + classification), the features are clustered again, lead-
ing to new pseudolabels. According to Caron et al. (2018), k
should be set higher than the target classes. Hence, to choose
a reasonable value for k, we evaluated three models using
k = {30,100,1000}. Hyperparameters were mostly adopted
from the original DeepCluster setup; only batch size and the
number of epochs were set to 32 and 50, respectively.

For both pretext tasks (IP–SR and DC), we tested two
weight initializations: first, standard random (Kaiming) ini-
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Figure 3. Simplified graph of U-Net architecture for segmentation with ResNet34 backbone.

tialization (i.e., the network starts with random weights), and
secondly, initialization with pretrained ImageNet weights.
Hence, the ResNet34 part is initialized with weights of a
ResNet34 model that was trained using ImageNet. These are
available online and can be downloaded via PyTorch.

4 Experimental results

Next, we briefly examine the models from self-supervised
pretraining. However, the major part deals with the segmen-
tation results of the validation set of our labeled data.

4.1 Pretraining results

The pretraining results are only evaluated qualitatively to
check whether our models learned to solve the tasks sensi-
bly. Regarding IP–SR, Fig. 4 shows an example of an ASI
section of the input, the prediction and the ground truth (orig-
inal) image. Here, it can be seen that the part of the black
box is indeed filled similarly to the cirrus clouds which were
occluded. Even small parts of the neighboring altocumulus
clouds in the upper right corner are reconstructed. Also, more
structural and textural details are present in the predicted im-
age compared to the input. However, there are also some ar-
tifacts visible in the reconstructed area, and there is still a no-
table difference to the original resolution. We chose this par-
ticular image section as the occluded part contains two cloud
layers, and it can be seen that the model’s predictions for
the black box depend on the surrounding conditions. Clearly,
this exemplary instance does not prove the general capabil-
ity of the model to make reasonable predictions for the en-
tire dataset. However, as we could not find any unexpected

Figure 4. From left to right: input, prediction and ground truth in
inpainting–super-resolution pretext task.

pixel reconstructions on multiple days of generated ASIs un-
der various conditions, a successful learning effect can be
assumed.

In the case of DeepCluster, we examined exemplary sam-
ples that were classified based on the final cluster assign-
ments. Figure 5 depicts four randomly picked ASIs of four
different clusters. In this example, the model was trained with
k = 30 clusters. It can be observed that the clusters consider
general cloudiness conditions like cloud coverage but also
focus on sun elevation and turbidity. In the upper row, even
raindrops on the lenses seem to be a characteristic feature for
this cluster assignment.

4.2 Segmentation results

To evaluate overall segmentation performance, we use two
commonly applied metrics: first, pixel accuracy, which is de-
fined by the number of correctly predicted ASI pixels divided
by the number of all ASI pixels (NumPix), and secondly,
mean intersection over union (IoU), the overlapping area of
predicted and target pixels by their union. The border part of
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Figure 5. Four randomly chosen samples of four clusters after training. The images of each row correspond to one cluster.

the ASI, indicating masked image areas (see Sect. 2.2), is ne-
glected as this would distort the results. Furthermore, we also
evaluate precision, recall and IoU for each class to analyze
segmentation in more detail. These metrics are normalized
corresponding to the number of (predicted and target) pixels
of the respective class. Thus, the size of an observed cloud
type is considered for computing the metrics’ averages. Our
evaluation metrics are therefore defined as

pixelAcc=
1
N

N∑
i=1

TPi +TNi
NumPix

(3)

mIoU=
1
N

N∑
i=1

TPi
TPi +FPi +FNi

(4)

precisionc =

∑N
i TPc,i∑N

i TPc,i +FPc,i
(5)

recallc =
∑N
i TPc,i∑N

i TPc,i +FNc,i
(6)

IoUc =

∑N
i TPc,i∑N

i TPc,i +FPc,i +FNc,i
, (7)

where TP and FP (TN and FN) refer to true and false pos-
itives (true and false negatives), respectively; the index c to
one of the cloud classes; and N to the number of ASIs.

First we compared different training setups of the pretext
tasks. Apart from pretraining initialization, this comprises
also the different values for k in the DeepCluster pretraining.
After pretraining, the trained weights of the ResNet34 part
are transferred to the segmentation model, fine-tuned using
the training set and evaluated for the validation set. Table 2
summarizes the results for pixel accuracy and mean IoU. In
all setups the differences are rather small. Pixel accuracy is
between 84.6 % and 85.8 %, whereas mean IoU is always
slightly over 80 %. Hence, no significant improvement using
ImageNet initialization for self-supervised pretraining can be
observed. The influence of k on the segmentation task is also
small, but smaller values seem to lead to marginally better
results.

In the next step, we compare our self-supervised approach
to standard supervised training with random and ImageNet
initialization. All the following statements are based on Ta-
ble 3. For a better overview, only the best self-supervised
models in terms of pixel accuracy are considered here (DC
and IP–SR with ImageNet initialization and DC with k =
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Table 2. Comparison of segmentation results when testing different training setups for self-supervised pretraining. Best values are highlighted
in bold.

IP–SR DeepCluster

Pretraining initialization Random ImageNet Random ImageNet

Number of clusters k – – 30 100 1000 30 100 1000

Pixel accuracy 85.09 85.75 84.40 84.46 84.60 85.22 84.86 84.88
Mean IoU 80.58 80.46 79.81 79.58 80.09 80.48 80.41 80.22

30). Regarding overall pixel accuracy and mean IoU, our
self-supervised approaches reach over 3 percentage points
more than starting with ImageNet and about 7 percentage
points more than with random initialization. Concerning the
prediction of cloud classes, a more significant improvement
becomes evident. On average, precision, recall and IoU are
about 9–10 percentage points higher for the self-supervised
IP–SR approach compared to ImageNet initialization. For the
mid-layer class, it is about 15 percentage points. Also our DC
method outperforms the purely supervised approaches sig-
nificantly, reaching similar values on average as the IP–SR
method. Overall, self-supervised learning achieves the best
results except for recall of sky. However, this is negligible
as all approaches reach values over 97 %, and corresponding
precision is significantly lower, indicating overestimation.

To further interpret segmentation results, we analyze mis-
classification using a confusion matrix shown in Fig. 6. Most
frequent confusions are between adjacent cloud layers, which
is why the mid-layer class is predicted to be the worst. Also
high-layer clouds are sometimes not detected at all. On the
other hand, low- and high-layer clouds can be distinguished
quite reliably.

When examining exemplary segmentation masks as de-
picted in Fig. 7, another problem becomes apparent. Thin-
ner parts of low-layer clouds are sometimes misclassified as
mid- or even high-layer clouds since they typically occur in
twilight zones. Moreover, the decrease in classification accu-
racy for lower elevation angles is expected because the fish-
eye lenses capture these areas with lower resolution. Another
challenge is stratus-like overcasts. These clouds often lack
texture; they can have variable depth, and they can occur in
all layers, which makes it particularly hard to differentiate.
A very challenging cloud condition is shown in the lower
example of Fig. 7, which combines a lot of the challenges
just mentioned. Although it recognizes parts of the low-layer
clouds, the model seems to be uncertain about the specific
cloud layers as it often changes between all three classes.
Nevertheless, the accuracy regarding cloudy and cloud-free
pixels is still very high.

4.3 Comparison of binary segmentation results

Finally, we compare our approach to binary segmentation
with the results of a state-of-the-art CSL (Kuhn et al., 2018).

Figure 6. Confusion matrix of segmentation model with IP–SR*
pretraining.

The dataset is the same as for previous evaluations, compris-
ing 154 representative ASIs. Beforehand, our segmentation
model (IP–SR*) was fine-tuned using binary ground truth
masks, leading to slightly better results than postprocessing
the semantic masks of four cloud types. Again we evaluated
the models’ pixel accuracy. Reaching 95.2 % on average, the
CNN outperforms the CSL (87.9 %) by over 7 percentage
points. As shown in Fig. 8, we also analyzed both methods
under different predefined conditions of cloudiness, where
the CNN always outmatches the CSL. Especially for more
challenging mid- and high-layers clouds, our model achieves
90 %–95 %. In comparison to the CSL this a benefit of over
10 percentage points.

The binary cloud detection is a processing step at the
beginning of most ASI applications, such as nowcasting.
Hence, the increase in accuracy has the potential to improve
the overall performance of these ASI applications signifi-
cantly.
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Table 3. Segmentation results comparing our self-supervised approaches with standard ImageNet or random initialization. IP–SR* and DC**
refer to pretraining starting with ImageNet weights and k = 30 for the DC method. Best values are highlighted in bold.

Class Random ImageNet IP–SR* DC**

Pixel accuracy – 78.34 82.05 85.75 85.22

Mean IoU – 72.11 77.10 80.46 80.48

Precision

Sky 90.92 93.67 94.06 94.25
Low-layer 63.61 69.70 78.75 73.70
Mid-layer 49.14 56.34 71.23 75.09
High-layer 48.72 58.67 64.41 64.73

Recall

Sky 97.95 97.53 97.37 97.13
Low-layer 71.43 78.74 85.58 89.13
Mid-layer 26.21 32.38 48.88 40.15
High-layer 47.32 65.06 68.76 70.65

IoU

Sky 89.23 91.50 91.73 91.69
Low-layer 50.71 58.66 69.52 67.63
Mid-layer 20.62 25.88 40.82 35.43
High-layer 31.59 44.61 49.83 51.02

Figure 7. Positive and negative prediction examples compared to ground truth for a given input from the validation set (blue: sky; red: low
layer; yellow: mid-layer; green: high layer).

4.4 Comparing our results to the literature

In principle, an expressive comparison to the literature can
only be conducted if the data for evaluation are the same.
That is because prevailing cloud conditions within the dataset
can be very different, and thus better or worse accuracies
can be achieved. For example, the number of ASIs contain-
ing difficult cirrus clouds or atmospheric conditions with
high Linke turbidity can affect the overall accuracies signif-

icantly. Still, the latest developments towards learning-based
approaches show the superiority over traditional threshold-
based methods, with our results confirming this trend (see Ta-
ble 4). For instance, the proposed learning-based model from
Cheng and Lin (2017) achieves over 10 percentage points
more than a standard red–blue ratio or the HYTA (hybrid
thresholding algorithm) model (Li et al., 2011). Also in other
recent studies, machine learning models clearly outperform
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Figure 8. Comparison of our results with a CSL for the validation set under different conditions of cloudiness. Cloudy-SV and Cloudy-SC
specify partially clouded conditions with the sun visible (SV) or covered (SC). Sun Free determines whether the sun disk is completely free
from clouds.

classical approaches like red–blue ratio, CSLs or the HYTA
model.

5 Conclusions

In this paper, we presented the first approach to pretrain
deep neural networks for ground-based sky observation us-
ing raw image data. Based on our results, these networks
can be trained more effectively without the need for label-
ing thousands of images by hand. For cloud segmentation,
this offers the possibility for simultaneously detecting and
distinguishing clouds with associated properties in ASIs us-
ing deep learning. Our developed segmentation model is
based on the U-Net architecture with a ResNet34 encoder,
and the model categorizes ASI pixels into four classes. For
self-supervised pretraining, we evaluated two distinct pretext
tasks: inpainting–super-resolution and DeepCluster. We in-
spected the pretrained models’ ability to solve their respec-
tive tasks and evaluated them for our validation set for cloud
segmentation, containing 154 ASIs. By comparing the re-
sults from our pretrained models with the ones from Ima-
geNet or random initialization, we showed the benefits of
self-supervised learning. Considering only pixel accuracy,
our pretrained models reach over 85 %, compared to 82.1 %
(ImageNet initialization) and 78.3 % (random initialization).
For mean IoU, the results are 80.5 %, 77.1 % and 72.1 %,
respectively. But the most significant advantage becomes ev-
ident when regarding the distinction of cloud classes. In par-
ticular for more challenging cloud types such as mid- or high-
layer clouds, precision, recall and IoU of the self-supervised
models are often 10–20 percentage points higher. Further-

more, we evaluated our approach with regards to binary seg-
mentation. Compared to a state-of-the-art CSL our model is
more accurate under all examined conditions. On average ac-
curacy is 95.2 % and thus 7 % higher than the accuracy of
the CSL. Although an expressive comparison to the litera-
ture due to different datasets is not possible, our work con-
firms the superiority of learning-based approaches for cloud
segmentation. However, there is still room for improvement
in recognizing cloud types. High variability and similarity of
different types make precise cloud classification difficult. In
particular distant clouds and twilight zones cause false cloud
type predictions. Therefore, more studies on other pretext
tasks or other methods exploiting raw image data are needed.
Finally, as self-supervised pretraining uses many more image
data for training, it can be expected that the resulting models
are more robust when being applied to other datasets. In par-
ticular, future models could be trained using large datasets
of multiple cameras at different sites, potentially capable of
generalizing well on any camera.

Code availability. The underlying software code is property of the
DLR and cannot be openly published.

Data availability. The all-sky images and corresponding segmen-
tation masks are property of the DLR’s Institute of Solar Re-
search and can be requested from the corresponding author
(yann.fabel@dlr.de).
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Table 4. Comparison of our results with the literature. Number of ASIs refers to the number of images used for validation.

Source No. of No. of Method Semantic Binary
classes ASIs accuracy accuracy

Cheng and Lin (2017) 2 250
Red–blue ratio – ∼ 78 %
HYTA – ∼ 79 %
Feature extraction + classifier – ∼ 90 %

Ye et al. (2019) 9 460 Feature extraction and transformation 71.28 % 93.71 %
+ classifier

Hasenbalg et al. (2020) 2 160
CSL – 92.51 %
HYTA+ – 95.79 %
CNN – 96.98 %

Xie et al. (2020) 2 60
Red–blue ratio – 81.17 %
CNN – 96.24 %

This work
2 154 CSL – 87.88 %
4 154 CNN 85.75 % 95.15 %
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