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1. Introduction

By 2020, the overall global solar energy capacity reached roughly
714 GW (�707 GW photovoltaic and �6.5 GW concentrated
solar thermal power), which represents an increase of 21.6%
compared to 2019. In total, solar power alone contributes roughly

39% of the newly added global electricity
capacities in 2020.[1] Solar irradiance is
an intermittent energy source, especially
when considering local sites and short time
scales. Aggregation effects in space and
time will reduce the variabilities. The
causes for the variabilities are on the one
hand seasonal effects as well as the day–
night cycle caused by the Earth’s tilted axis
and rotation and on the other hand atmo-
spheric extinction processes caused by
aerosols and clouds, which are the main
cause for intra-hour and intra-minute solar
irradiance variabilities. The substantial
growth of intermittent and spatially distrib-
uted electricity generation causes new tech-
nical challenges. Historically, our electricity
grids grew with a radial topology optimized
for centralized electricity generation and
unidirectional information as well as elec-
tricity flow.[2] The integration of distributed
intermittent sources with an annual energy
share beyond 15% requires significant
changes in system operations of the electri-
cal grids.[3] Unchanged operation may lead

to grid congestion as well as instabilities.[4–6]

A potential solution for these technical challenges could be a so-
called smart grid with a topology of type “network,” integrated stor-
age capacities and bidirectional information as well as energy flow
suitable for distributed electricity generation with dynamic pric-
ing.[2,7] Another solution is the ramp regulation of solar power
plants. This shifts the issue from the grid to the power plant itself.
Upward ramps can be avoided by curtailment and batteries can be
used to fulfill downward ramp limitations. The application of now-
casts can help to reduce curtailment, required battery capacity, and
battery degradation.[8] Continuous balancing of electricity genera-
tion, transmission, and demand is needed, making solar energy
forecast a key element for a stable grid and solar power plant man-
agement, especially under variable conditions.[9]

Different forecast horizons and resolutions in space and time
are needed for distinct conditions and applications. Nowcasts
represent forecasts for the immediate future, including the next
minutes ahead, with a high resolution, which are normally lim-
ited to a local coverage. These nowcasts are particularly suitable
for fine-grained control of PV and storage applications, such as
PV power plant ramp rate control with dedicated backup systems,
task scheduling, and electricity market clearing.[8,9] Forecasts
beyond an hour and up to roughly 3 days ahead become
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The share of distributed solar power generation is continuously growing. This
increase, combined with the intermittent nature of the solar resource creates new
challenges for all relevant stakeholders, from generation to transmission and
demand. Insufficient consideration of intra-minute and intra-hour variabilities
might lead to grid instabilities. Therefore, the relevance of nowcasts (shortest-
term forecasts) is steadily increasing. Nowcasts are suitable for fine-grained
control applications to operate solar power plants in a grid-friendly way and to
secure stable operations of electrical grids. In space and time, highly resolved
nowcasts can be obtained by all sky imager (ASI) systems. ASI systems create
hemispherical sky images. The associated software analyzes the sky conditions
and derives solar irradiance nowcasts. Accuracy is the decisive factor for the
effective use of nowcasts. Therefore, the goal of this work is to increase the
nowcast accuracy by combining ASI nowcasts and persistence nowcasts, which
persist with the prevailing irradiance conditions, while maintaining the spatial
coverage and resolution obtained by the ASI system. This hybrid approach
combines the strengths while reducing the respective weaknesses of both
approaches. Results of a validation show reductions of the root mean square
deviation of up to 12% due to the hybrid approach.
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increasingly important for energy grid control applications such
as demand balancing/managing, power scheduling, and unit
commitment.[9] Proper demand management could reduce cost
mainly by the reduction of otherwise required peaker plants.[7]

Forecasts looking even further ahead are useful for scheduling
of maintenance work.[9]

In general, there are two main strategies to produce nowcasts/
forecasts. First, data-driven statistical approaches and second, phys-
ical approaches based on ground-based sky images, satellite
images, or numerical weather predictions (NWPs). A wide variety
of statistical approaches exist, covering the range from highly
resolved local nowcasting approaches to coarse forecasts looking
multiple weeks ahead.[10] Ground-based sky images are suitable
for local nowcasts.[11] Satellite-based approaches provide forecasts
with a reasonable accuracy up to 6 h ahead, covering large conti-
nental areas with typical temporal and spatial resolutions of
15min and 2–10 km, respectively.[12] More advanced satellite
systems such as the Himiwari-8 or GOES-R reach spatial resolu-
tions of 0.5 km2 and temporal resolutions down to 5min.[13] NWPs
are based on multiple differential equations describing relevant
physical and chemical processes from an initial state, typically suit-
able for forecasts with temporal and spatial resolutions of≥1 h and
≥1 km, respectively, and horizons of multiple days ahead.[14]

Forecasts are never perfect and always subject to uncertainties.
Uncertainties may reduce the potential benefit of forecasts and
lead to new challenges such as increasing solar curtailment and
increased demand for balancing power.[10] Further potential
effects include unfavorable assessment of electricity prices and
increased maintenance cost due to accelerated degradation of
technical facilities. Therefore, the reduction of forecast uncer-
tainties is of great importance to overcome the challenges for
substantial PV integration.

The aim of this work is to reduce the uncertainties of solar irra-
diance nowcast based on sky images, which are suited to represent
intra-minute and intra-hour variabilities caused by clouds. For this
task, sufficiently resolved sky images can be obtained by the so-
called all sky imager (ASI) systems, consisting of upward-facing
cameras with fisheye lenses. In recent years, methods have been
developed to automatically detect clouds,[15] evaluate the cloud radi-
ative effect,[16] and identify cloud motion vectors from such sky
images.[17] If multiple cameras with overlapping viewing angles
are available, cloud geolocalization can be performed using stereo
photography.[18] A combination of such processing steps can be
applied to derive irradiance nowcast.[19]

Further methods of obtaining irradiance nowcasts are persis-
tence approaches, which also serve regularly as control reference
models. As the name implies, these approaches are based on
maintaining the current state. The most basic global horizontal
irradiance (GHI) persistence predictions are described by
GHIp(tþΔt)¼GHI(t). More complex persistence approaches
may take future sun positions or clear sky indices into account.[20]

The performance of persistence approaches is often competitive
in intra-hour nowcasting,[20] considering the challenges of ASI-
based nowcasting systems.[21] This work presents a real-time-
capable hybrid ASI and persistence nowcasting approach,
which combines the strengths while reducing the respective
weaknesses of both approaches.

This article is structured as follows: Section 2 describes the
utilized persistence, ASI, and hybrid-based nowcasting

approaches. Section 3 introduces the used validation data set
and the validation procedure. Results of the validation procedure
are presented and discussed in Section 4. Finally, Section 5
concludes the findings.

2. Experimental set up and method

The persistence and ASI-based nowcasting approach as well
as the hybridized nowcasting approach are described in this
section. The given description of the ASI-based approach is lim-
ited to an overview, as it is by itself not the main subject of this
work. A more detailed description can be found in the corre-
sponding cited publications.

2.1. Persistence Nowcast

The utilized persistence nowcast is based on the work by Ineichen
and Perez.[22] The prevailing Linke turbidity factor (TL) is calculated
using the GHI typically measured by a pyranometer, h the height
of the site, I0 the solar constant, r0 the average distance from the
Sun to the Earth, r the current distance from the Sun to the Earth, α
the solar altitude angle, and AM the air mass.

TL ¼ ���1� logðGHI=ðð5.09� 10�5 � hþ 0.868Þ � I0

� ðr0=rÞ2 � sinðαÞÞ�� ð1=ð3.92� 10�5 � h þ 0.0387Þ
� AMÞÞ � expð�h=8000Þ�� 1=expð�h=1250Þ þ 1

(1)

For the persistence nowcast, the TL is kept constant while α
and AM are calculated for lead times >0min. Subsequently, the
GHI persistence nowcast is calculated with the corresponding
rearranged Equation (1) and the future solar altitude angles.

2.2. ASI-Based Nowcast

A nowcasting system based on two off-the-shelf Mobotix Q25
surveillance cameras has been developed. The camera setup of
the used nowcasting system is listed in Table 1. The ASI-based
nowcasting system also uses ground-based measurements of
direct normal irradiance (DNI) and diffuse horizontal irradiance
(DHI), taken directly next to one of the cameras.

The final output of the ASI-based nowcasting system consists
of GHI maps, covering an area of >60 km2 with a constant spa-
tial resolution of 20m and lead times up to 20min ahead.
Figure 1 shows such a GHI map and the corresponding cloud
model as well as all the needed processing steps. These steps
include cloud detection with a convolutional neural network,[23]

cloud geolocating based on a stereoscopic approach,[24]

Table 1. Camera setup used for ASI nowcasting system.

ASI system

Camera model Mobotix Q25

Number of cameras used 2

Image resolution 4.3 MP

Exposure time 160 μs

Frame rate 30 s
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cloud tracking with multiple sequential images and cross
correlation,[24] shadow projection of current and predicted cloud
positions via ray tracing,[25] and the analysis of the radiative effect
by means of a probabilistic approach utilizing recent and historic
cloud height and DNI as well as DHI measurements.[26]

2.3. Hybrid Nowcast

The ASI-based nowcasting system introduced in Section 2.2 cre-
ates irradiance maps. These maps incorporate the locations of
cloud shadows predicted from the current observations by the
cameras and the used irradiance measurement. Such a map

at the time of the image acquisition is shown in Figure 2 (left
site, “observation map”). The green cross marks the position
of the used irradiance measurement. For this position of the
observation map the irradiance will always match directly the
known irradiance from the ground-based irradiance measure-
ments. The remaining sections of the map receive irradiance
information derived from the ASI images. Starting from the
observation map, two distinct sets of nowcasts are created.
The first set of nowcasts uses the persistence approach.
Thereby, the persistence nowcasting process from Section 2.1
is applied to each pixel of the observation map using the local
estimation of GHI as input, creating 20 distinct persistence

Figure 1. Illustration of final GHI map and cloud model as well as the needed processing steps cloud detection, geolocation, tracking, shadow projection,
and analysis of radiative effect.

Figure 2. Exemplary depiction of persistence and ASI-based nowcast (NC) derived from an observation at LT 0. The green cross represents the position of
the used ground-based irradiance measurements and the blue arrow represents the predicted cloud shadow motion (heading south-east with 8.9m s�1).
The persistence nowcast maps deviate from the observation map only by a gradual decrease of the irradiance due to the change of the sun’s position.
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nowcasting maps with lead times (LTs) from 1 to 20min ahead
(see Figure 2 top right). For the marked pixel this corresponds to
the persistence of the ground-based irradiance measurements.
The second set of nowcasted GHI maps is derived by the
ASI-based approach as described in Section 2.2 (see Figure 2,
bottom right).

A sliding validation of recent historical nowcasts is per-
formed for both nowcasting approaches using the observation
maps of the last 5 min. For this purpose, the sliding root mean
square deviation (RMSD_Sl) is calculated in real time

according to Equation (2) for each pixel individually using
the observation GHI maps ðGHIobs,pxÞ of the past 5 min as ref-
erence for the corresponding GHI nowcasts GHILT,px,j for each
delivered lead time.

RMSD SlLT,px,j ¼
1
n

Xn
i¼1

GHIobs,pxðtiÞ �GHILT,px,jðtiÞ
� �

2

" #
0.5

(2)

The index LT specifies the lead time, px the pixel ID, and the
index j indicates the two distinct nowcasting approaches.

Figure 3. Illustration of calculation of RMSD SlLT,px,j between recent ASI observations and the corresponding nowcast with a given lead time (LT)
representing the same time stamps derived from previous ASI observations.
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ti describes the corresponding time stamp and n the selected
time interval of 5 min in the ASI system resolution of 30 s.
This validation approach represents an autovalidation between
ASI observations and the corresponding nowcasting approaches,
except for the pixel corresponding to the position of the used irra-
diance measurement station. A corresponding illustration of this
autovalidation procedure is shown in Figure 3. Autovalidations
should be treated with precaution, since intrinsic errors of the
ASI system are not considered. In the present application, it
is less critical as the autovalidation is only used to combine
the different nowcasting approaches over the space covered by
the GHI maps. The final overall validation of the distinct nowcast
approaches, as described in Section 3.2, does not involve an
autovalidation.

Subsequently, current nowcasts GHILT,px,j of both approaches
for a given lead time are combined to the hybrid nowcast
using the accuracy weighting approach described by
Meyer et al.[27] according to Equation (3) for each pixel of the
maps individually. An illustration of this approach is shown
in Figure 4.

GHILT,px ¼
1P2

j¼1
1

RMSD SlLT,px,j

�
X2
j¼1

GHILT,px,j
RMSD SlLT,px,j

(3)

3. Validation Data Set and Procedure

This section includes a description of the used validation period
as well as the validation procedure.

3.1. Validation Data Set

The ASI, persistence, as well as the hybrid nowcasting approach
are validated at CIEMAT’s Plataforma Solar de Almería (PSA)
with eight reference ground-based stations distributed over an
area of roughly 1 km2. The eight stations use ISO 9060 class A
spectrally flat pyranometers and pyrheliometers and automated
solar trackers with sun sensors. Reference values are used as
1min averages, and the time stamps describe the end of the
period. Figure 5 shows an aerial image of CIEMAT’s PSA with
blue markers for the eight reference positions and green markers
for the used ASI positions. The irradiance measurement from
the ground-based station next to the southwestern ASI serves
also as input for the nowcasting systems.

The validation data set contains 62 days between 01.09.2019
and 30.11.2019. Figure 6 shows the GHI conditions within
the validation data set as arithmetic average of the eight reference
pyranometers. The validation period included a wide variety of

Figure 4. Combined hybrid nowcast based on the accuracy-weighting approach considering validation results of recent historical nowcasts.
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Figure 5. Aerial image of CIEMAT’s PSA with markers for ASIs, ground-based irradiance reference stations as well as the area used for spatial averages
(Source: Google Earth © 2021 Google. [Accessed: 25.05.2021]).

Figure 6. Overview of the validation data set containing 62 days between 01.09.2019 and 30.11.2019. The GHI corresponds to the arithmetic average of
eight reference pyranometers distributed over an area of 1 km2.
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conditions from clear sky to scattered clouded with distinct
ranges of irradiance fluctuations up to overcast. For the
validation only time stamps with a Sun elevation angle ≥20�

are used.

3.2. Validation Procedure

For the further benchmark, a purely persistence-based nowcast is
derived from the ground-based station next to the southwestern
ASI (see Figure 5) according to the procedure described in
Section 2.1. This is the same station that provides the needed
irradiance measurements to the ASI as well as the hybrid-based
nowcasting approach. Thus, all nowcasting approaches
benchmarked against each other had access to exactly the same
irradiance measurements.

The original ASI-based nowcast and hybrid nowcast are
available in a 30 s resolution. 1 min temporal averages are
created, concordant with the reference data and the purely
persistence-based nowcasts.

The RMSD is used as an error metric for the benchmark
between the different nowcast approaches. For each of the eight
reference stations, the nowcast RMSD is calculated according to
Equation (4) over the entire validation period (number of evalu-
ated timestaps, m) discretized over the distinct lead times.

RMSDLT,st,j ¼
1
m

Xm
i¼1

GHIobs,stðtiÞ �GHILT,st,jðtiÞ
� �

2

" #
0.5

(4)

For this purpose, the nowcasted GHI is obtained from those
pixels of the GHImaps that represented the positions of the eight
reference stations (index st), in the case of the ASI- and hybrid-
based approaches. In case of the purely persistence-based
nowcasting approach, no spatial information is available.
Therefore, the same nowcast derived from the southwestern sta-
tion is validated with all eight reference stations. Consequently,
this gave the opportunity to evaluate the spatial suitability of a
persistence nowcast derived from a single local measuring
station, by examining the scatter of the RMSD across the differ-
ent reference stations.

Furthermore, spatial aggregation effects are evaluated. Spatial
averages are created from the GHI maps of the ASI- and hybrid-
based approaches, utilizing all pixels within the 1 km2 area
marked in Figure 5 by the yellow square that contains all eight
reference stations. As the reference data for this spatial average,
an arithmetic average of the eight reference stations is created.
Again, no spatial information is available for the
purely persistence-based nowcast approach. Nonetheless, the
persistence nowcast is also validated against the arithmetic aver-
age of the eight reference stations.

The validation procedure described so far shows the overall
performance of the nowcasting approaches. Such overall valida-
tion results give a first impression of the relative performance of
the three approaches for the same data set. However, these
overall results are inadequate for comparing validation results
of distinct sites or even distinct data sets because the perfor-
mance of the different nowcasting approaches depends strongly
on the composition of the prevailing conditions within the data
sets. Comparatively high accuracies are reached during steady
conditions with low variability consisting of clear sky or overcast
conditions. In contrast, lower nowcasting accuracies are reached
during highly variable conditions, especially under conditions
with fast-moving low layer clouds or under complex multilayer
conditions. Overall, validation results for a given time interval
without consideration of the prevailing conditions can lead to
false impressions of the accuracy. Therefore, the validation data
are discretized into eight distinct variability classes from clear sky
(class 1) to overcast (class 8). This classification procedure is
based on the work described in Schroedter-Homscheidt
et al.[28] with the adaptations described in Nouri et al.[29] The clas-
sification is fully automatized and analyzes 13 distinct variability
indices. This classification procedure assigns a class to each time

Table 2. Overview on used variability classes.

Class Sky conditions Clear sky index Variability

1 Mostly clear sky Very high clear sky index Low variability

2 Almost clear sky High clear sky index Low variability

3 Almost clear sky High/intermediate clear sky index Intermediate variability

4 Partly cloudy Intermediate clear sky index High variability

5 Partly cloudy Intermediate clear sky index Intermediate variability

6 Partly cloudy Intermediate/low clear sky index High variability

7 Almost overcast Low clear sky index Intermediate variability

8 Mostly overcast Very low clear sky index Low variability

Figure 7. (Left) Distribution of the occurring variability classes and (right) average GHI within the classes of the validation data sets.
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stamp based on the irradiance conditions of the previous 15min.
Table 2 lists a short description of the variability classes.

Figure 7 shows the distribution of the variability classes as
well as the average GHI for each class within the validation data
set. Around 57% of the data comprise the low-variability condi-
tions classes 1, 2, and 8. Intermediate and highly variable
conditions comprise 34% and 9% of the data set, respectively.
Most clear sky conditions at low solar altitude angles are classi-
fied in class 2, which results in comparably low GHI values
within this class. The average GHI over the entire data set is
384Wm�2.

Finally, RMSDs as well as MADs (according to Equation (5)
and (6)) are calculated for each lead time, nowcast approach, ref-
erence data set, and variability class (index vc). Furthermore,
spatial aggregation effects are analyzed, similar to the validation
across the entire data set.

RMSDLT,st,j,vc ¼
1
mvc

Xmvc

i¼1

GHIobs,st,vcðtiÞ � GHILT,st,jðtiÞ
� �

2

" #
0.5

(5)

MADLT,st,j,vc ¼
1
mvc

Xmvc

i¼1

jGHIobs,st,vcðtiÞ � GHILT,st,jðtiÞj (6)

4. Results and Discussion

The overall validation results without and with spatial aggrega-
tion including all days and variability classes are shown in
Figure 8. As expected, the deviations increase with rising LTs
for all the approaches. The RMSD curve flattens notably with
increasing LT. Among the individual reference stations, the
persistence approach shows a strong scatter in the low LTs of
1–4min. This is especially pronounced for LT 1min, with a
spread of 23Wm�2 in between the reference stations. The lowest
deviations belong to the southwestern reference station next to

one of the ASIs. This is to be expected, as the persistence
nowcast is derived from the measurements of that station in par-
ticular. The persistence approach underperforms for these low
LTs already at distances beyond 500m from the origin of the per-
sistence nowcast. For the higher LTs (>4min), this effect caused
by the spatial distance between the stations is no longer visible.
Variations between the stations quickly converge to a spread of
3–5Wm�2. The ASI and hybrid approaches show a similar
spread of 3–5Wm�2 over all LTs. When comparing the persis-
tence- with the ASI-based approach, it is apparent that up to a
lead time of 5min the ASI-based approach performs similarly
to the lower bandwidth of the persistence approach. The excep-
tion is the LT of 1min, where the persistence nowcast achieves
overall the lowest deviation for the southwestern reference sta-
tion (origin of the persistence nowcast). Beyond LT of 5min
and below LT of 16min, the ASI-based nowcast shows a clear
advantage, with deviations up to 6% lower than those of the per-
sistence-based nowcast. Both approaches perform similarly for
LTs beyond 16min. In contrast, the hybrid nowcasting approach
shows a significant performance improvement. An average
reduction of around 11.7 and 9.2% in RMSD is visible for all
LTs compared to the persistence- or ASI-based approach, respec-
tively. When taking the spatial aggregation effects into account,
the hybrid approach remains clearly the most performant
approach, outperforming the persistence- and ASI-based
approach on average by 13.5% and 10.8%, respectively.
Furthermore, the spatial aggregation has a significant impact
on the deviations compared to the deviation based on individual
reference stations. Overall reductions in RMSD are visible by
7.7%, 8.0% and 9.6% for the persistence, ASI, and hybrid
approaches, respectively.

Figure 9–12 show the validation results discretized over the
variability classes. Unsurprisingly, the lowest RMSD and
MAD values are observed for the nearly clear sky conditions
(class 1 and 2). Furthermore, as expected, the persistence
approach shows especially low error metrics for these least vari-
able conditions. However, two anomalies are visible for the ASI

Figure 8. Overall RMSD over lead times of all three approaches for individual reference stations as well as spatial averages.
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system at variability class 1. These anomalies are comparatively
pronounced for the RMSD and to a lesser degree also visible for

the MAD. The origin of these partially amplified deviations are
most likely outliers caused by false positive detections of high

Figure 9. RMSD discretized over variability classes 1 to 4 (see Table 2) and
LTs of all three approaches for individual reference stations as well as spa-
tial average.

Figure 10. RMSD discretized over variability classes 5 to 8 (see Table 2)
and LTs of all three approaches for individual reference stations as well as
spatial average.

Figure 11. MAD discretized over variability classes 1 to 4 (see Table 2) and
LTs of all three approaches for individual reference stations as well as spa-
tial average.

Figure 12. MAD discretized over variability classes 5 to 8 (see Table 2) and
LTs of all three approaches for individual reference stations as well as spa-
tial average.
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layer clouds. Nevertheless, also for the ASI approach the error
metrics remain comparatively low under variability class 1 con-
ditions. The third low-variability condition (class 8, overcast) also
shows low RMSDs and MADs. However, especially for the high
LTs, the error metrics are by a factor of up to three higher than
for class 1 conditions. All three nowcasting approaches show
similar error metrics for class 8. For the intermediate-variability
condition, class 3, the ASI-based approach shows a significant
advantage compared to the persistence approach in terms of
RMSD. In terms of MAD, the ASI advantage is rather small.
The remaining intermediate variability classes show a similar
performance in RMSD between the ASI- and persistence-based
nowcasts, with a slight advantage for the persistence in class 5
and a slight advantage for the ASI in class 7. In terms of
MAD, the persistence approach shows a more notable advantage
compared to the ASI approach. Both approaches are outper-
formed by the hybrid approach in all intermediate variability
conditions. As expected, the persistence approach yields high
RMSDs and MADs for the highly variable conditions classes 4
and 6. The ASI approach outperforms the persistence approach
clearly in these cases, especially for class 4, whereas the ASI and
hybrid approaches show similar performances.

The significant overall advantage of the hybrid approach is due
to the constant adjustment of the weighing factors based on the
sliding validation, as described in Section 2.3. This weighting
process, favors the persistence approach under low and interme-
diate variability conditions, where false positive or false negative
cloud detections of the ASI approach could lead to higher devia-
tions. In contrast, the persistence approach by definition is not
capable of modeling any variabilities except due to the changing
Sun position in the sky. Therefore, the ASI approach will be
favored most often under variable cases with a scattered cloud
cover.

Since the hybrid approach outperforms almost under all con-
ditions the other approaches, it does not appear beneficial to
select a method other than the hybrid approach as a function
of the prevailing conditions.

Figure 13 shows the average spread over all lead times in
RMSD between the eight reference stations as well as the average
impact of spatial aggregation on the RMSD. The lowest spread in
absolute RMSD between the eight distinct reference stations is
visible for the overcast conditions (classes 7 and 8) with values
between 4 and 6Wm�2. This is due to the mainly homogeneous
cloud cover leading to a low to intermediate variability combined

with a low GHI. Under such overcast conditions, uncertainties of
the processing steps, cloud geolocation and tracking have hardly
any influence on the nowcast uncertainties. In comparison, the
clear sky and low-variability conditions classes 1 and 2 show a
more pronounced spread in absolute RMSD with values between
6 and 9Wm�2 and 9 and 15Wm�2 for class 1 and class 2,
respectively. However, in relative terms, class 1 has clearly the
lowest spread in RMSD between the reference stations due to
the overall high GHI. The most significant spread between
the reference stations is visible for classes 3 and 4. This is to
be expected as these conditions are related to the highest GHI
values after class 1 combined with an intermediate to high
variability.

Overall the spatial aggregation effects have a benefit over all
classes. This benefit is rather low for the classes with low-
variability conditions, especially for class 8. The strongest impact
is visible for the intermediate and highly variable conditions clas-
ses 3, 4 and 6, which are also the classes with the highest overall
deviations. The importance of spatial effects becomes clear when
considering the size of utility-scale PV power plants. According
to Ong et al.,[30] the average total land use per megawatt in the
United States is around 0.03 km2, whereas the average capacity
per power plant is around 9MW.[31] On the upper end of the
scale, solar parks exist consisting of multiple power plants with
total capacities >2 GW, covering areas >50 km2.[32]

5. Conclusion

An ASI and a purely persistence-based nowcasting approach
were benchmarked. In addition, a hybrid nowcasting approach
was developed and added to the benchmark. The hybrid
approach combines the spatial nowcast from the ASI approach
with a spatial persistence nowcast derived from the ASI
observations.

The validation procedure is conducted with eight distinct
reference stations distributed over an area of roughly 1 km2.
The persistence-based nowcast is derived from one of the eight
reference stations, which is located in the southwestern corner of
the validation space. If only the measurement station used for the
creation of the persistence forecast is applied for the validation,
the purely persistence-based approach shows a performance sim-
ilar to that of the ASI-based approach for LTs below 6min.
Beyond this point, a clear advantage of the ASI-based approach
is visible. However, within the first 4 min ahead, the persistence

Figure 13. (Left) Mean spread of the RMSDs (over all LTs) between eight spatially distributed reference stations (right) Mean reduction of the RMSD
(over all LTs) due to spatial aggregation.
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nowcast accuracy varies strongly between the reference stations.
The performance of the persistence approach decreases strongly
with increasing distance from the origin of the persistence now-
cast, with an increase in RMSD of up to 23Wm�2 for reference
stations at a distance beyond 500m. For the higher LTs (>4min),
this effect is less significant. Both the purely persistence- and the
ASI-based approaches are clearly outperformed by the hybrid
approach over all LTs.

The performance of the nowcasting approaches also depends
strongly on the conditions at hand. Between the ASI-based and
purely persistence-based approaches, a clear difference is visible
when discretizing the validation data in the eight classes with
distinct irradiance variability conditions. As expected, the persis-
tence approach shows the best performance for low variability
conditions, whereas it is outperformed by the ASIs during highly
variable conditions. This is based on the fact that the persistence
approach by definition cannot model any variability except due to
the changing Sun position in the sky. The clear division of
strengths within distinct conditions is exploited by the hybrid
approach, which clearly outperforms the ASI and persistence
approaches under almost all conditions. Overall, RMSD reduc-
tions between 9% and 12% are reached by the hybrid approach.
The only exceptions are highly variable conditions with an inter-
mediate clear sky index represented by the irradiance variability
class 4. Under these conditions, the ASI-based approach clearly
outperforms the purely persistence-based approach, whereas the
hybrid approach achieves results similar to the ASI-based
approach.

Furthermore, for all three approaches the influence of spatial
aggregation on an area of 1 km2 was analyzed. There was a
significant beneficial impact on the overall performance of all
the approaches, with overall reductions in RMSD by 7.7%,
8.0%, and 9.6% for the purely persistence-, the ASI-, and the
hybrid-based approaches, respectively.

The presented real-time capable hybrid combination method
is a promising approach to improve ASI-based irradiance now-
casts. Further particularly promising potential for improvement
in ASI-based nowcasting lies in the geolocation and tracking of
clouds, especially under complex multilayer cloud cover condi-
tions. Dense networks of ASIs with overlapping viewing angles
can lead to further notable performance enhancements of ASI-
based nowcasts.[33] Such networks can also increase significantly
the nowcasts’ horizon while maintaining the same resolution.
Future research will evaluate in detail the nowcasts potential
to improve the performance of electrical grids and power plants
under variable conditions, despite the nowcasts uncertainties.
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