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E
ELECTRICITY SYSTEMS AROUND 
the world are decarbonizing, driven 
by reductions in the cost of renewable 
energy and encouraged by supportive 
regulatory policy. Electricity market 
designs are increasingly being tested to 
ensure that the bulk power system can 
deliver reliable, cost-effective energy to 
all consumers.

Underpinning the delivery of reli-
able, cost-effective energy requires 
several sequential processes ranging 
from short term (e.g., day-ahead energy 
scheduling and real-time power dis-
patch) to long term (e.g., making an 
investment decision to build a new 
generation or transmission asset). All 
of these processes are impacted by the 
accuracy of forecasting.

The bulk power system is transition-
ing from one where most of the genera-
tion came from conventional generat-
ing units to one where the predominant 
amount of generation comes from emis-
sion-free resources, such as wind and 
solar photovoltaic (PV) generation, 
which have low marginal costs due to 
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zero fuel expenses. This change is increasing the commercial 
pressure on existing conventional power plants, potentially 
leading to their closure earlier than originally planned. As 
the share of the supply mix where the fuel source is weather 
dependent expands, the importance of accurate weather as 
well as wind and solar generation forecasting similarly grows. 

Furthermore, the proliferation of distributed energy resources, 
such as behind-the-meter solar PVs, batteries, and electric 
vehicles, is providing opportunities for new market partici-
pants with innovative new business models, such as virtual 
power plants.

This confluence of factors is leading to a renewed focus on 
the optimal integration of forecasting and markets to ensure 

 ✔ uncertainty and risk are prudently managed day to day
 ✔ essential system services are adequately procured and 
compensated for

 ✔ appropriate market signals exist to incentivize and 
achieve the necessary investment

 ✔ reliable energy is delivered cost-effectively.

The Evolution of Forecasting and Its 
Increasing Importance
Load-forecasting techniques have developed since the 1950s, 
and the field has a high level of maturity. It is already widely 
integrated into the operational procedures of system opera-
tors and market agents. However, existing load-forecasting 
methods require adjustments to tackle two new challenges:

 ✔ accounting for the influence of distributed generation, 
demand response programs, and extreme weather 
events in load profiles

 ✔ exploiting smart metering data in a hierarchical load-
forecasting framework across multiple voltage/system 
levels.

For long-term horizons (years ahead), load forecasting is 
becoming highly dependent on technology adoption, such as 
the proliferation of PVs, electric vehicles, and smart appli-
ances. This means research in technology forecasting should 
be revisited to improve forecast skills.

Figure 1 depicts the model and value chain for renewable 
energy forecasting. As a first step, numerical weather predic-
tion (NWP) models generate forecasts of weather variables 
for horizons up to several days ahead, usually with updates 
every 6 h. Spatial resolution can go down to 1 km and tempo-
ral resolution to 1–3 h. For very short horizons (several min-
utes to a few hours), forecasts of the weather variables can be 
generated from satellite- or sky imager-based models. 

These forecasts, together with measurements from renew-
able energy source (RES) plants, are then used as inputs to 
dedicated RES forecasting models to predict the power out-
put of these plants. If the horizon is very short (typically up 
to 2 h), forecasts can be based only on onsite measurements 
as well as satellite and sky imager data.

The last step is a decision-aid phase, which can be either 
a human expert who visualizes the forecast products and 
makes a choice or an automated software tool that involves 

some optimization functions. This value chain presents sev-
eral gaps and bottlenecks at different levels, which are also 
shown in Figure 1.

The use of forecasts and market clearing (and, more gener-
ally, decision making) are inextricably linked across the major-
ity of electricity markets around the globe. What may differ is 
how they are integrated, who is responsible for providing them, 
and what type of forecast is needed at which operation stage.

Accurate long-term load and renewable energy forecasts 
are necessary, not just for prospective renewable genera-
tion investors to know their potential for revenue to justify 
builds but, increasingly, for all other prospective technolo-
gies. These forecasts can help investors and system planners 
understand the need for all technologies to support resource 
adequacy. They also provide insights on prices that may 
impact the profitability of each technology in different ways.

Regions in the United States and Europe typically have day-
ahead markets, which allow for price certainty in determin-
ing the efficient unit commitment of resources through either 
centralized or decentralized unit commitment procedures. 
Day-ahead load, wind, and solar forecasts are crucial for these 
markets and have been the domain of specialized forecast pro-
viders worldwide. These forecasts may be provided by the mar-
ket participants or system operator to ensure reliability through 
subsequent processes, such as the reliability unit commitment 
that follows the day-ahead market in the United States. 

Despite their name, real-time markets are typically cleared 
in advance of the operating time. Some markets may close 
more than 60 min before the operating hour, and market clear-
ing may still occur 5–30 min ahead. While the accuracy of 
forecasts in these horizons tends to be far better than those 
used in the day-ahead market, they are still not easy to com-
pute. Precise forecasts during this timeframe are critical to 
ensure the operating reliability and economic dispatch of all of 
the technologies. A poor forecast in system operation can also 
have severe economic, financial, and reliability consequences. 
This may depend on the forecast horizon and market where it 
occurs as well as the magnitude of the forecast error.

The reliance on accurate forecasting and its impact will 
continue to increase in importance (see Figure 2) as variable 
renewable energy installed capacity grows. Unit commitment 
procedures may decline in importance due to decreases in 
resources that require ample time to commit. However, the deci-
sion to charge batteries and other storage is heavily impacted by 
the forecasts of prices, which are driven by the predictions of 
everything else. Price-responsive demand also requires accurate 
forecasts to position a plant to react to price events while mini-
mizing the impact on its operations and resources. 

Load, renewable energy, and fuel forecasts are used to derive 
a series of other predictions. These will impact future prices, 
thereby affecting offers of fuel-limited resources, such as natu-
ral gas and energy storage. Contingency analysis is driven by 
forecasts, as the possibilities that system operators are most 
worried about may not simply be single events. Increasingly, 
they could be extreme, weather-driven, multiple-contingency 
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occurrences. Dynamic transmission limits require forecasts to 
ensure the changing resource mix can be most efficiently used, 
extracting the most possible out of a potentially constrained 
transmission system.

Dynamic operating reserve requirements are forecast so that 
sufficient quantities are ready when risk is high but reduced 
when it is low to keep costs down. Finally, forecasts are required 
to help anticipate extreme events that may have devastating 

impacts on the power system. With a changing climate, fore-
casting techniques will need to evolve to incorporate these shift-
ing conditions from the planning to operating timeframe. 

The Integration of Renewable Energy 
Into Market Operation
Increasingly, renewable energy generation assets are asked 
to participate in electricity markets and compete against 
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figure 1. The current bottlenecks of the renewable energy forecasting value/model chain. (Source: Smart4RES project; 
used with permission.)
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other forms of power generation, with or without additional 
regulatory support. In most cases, those electricity markets 
comprise several forward stages (e.g., day ahead) and a near-
real-time balancing stage. Consequently, renewable energy 
producers (or portfolio managers) place offers in those for-
ward electricity markets based on forecasts.

Market participation has been the main motivation for 
renewable energy producers to invest in forecasting solutions 
over the last few decades. It has also been a strong driver for 
innovation in forecasting and for assessing the value of com-
peting forecast solutions. For instance, besides the problem 
of the quantification of reserve requirements (discussed later 
in this section), market participation supported the focus on 
uncertainty quantification in renewable energy forecasting 
and eventual advent of probabilistic forecasting. 

Today, emphasis is placed on many problems related to 
the market participation of renewable energy producers. 
These are all problems of decision making under uncer-
tainty since the power generation forecasts are not perfectly 
accurate. One of the most basic considerations is that the 
market-induced penalties for imbalances may not be sym-
metric, e.g., the penalty can be higher for underproducing 
than overproducing. This incentivizes being strategic when 
placing offers in electricity markets.

In addition to such uncertainty-related considerations, one 
should be aware of risk-related considerations. Forecast errors 
may vary greatly, most often being small but sometimes very 
big, and so may market prices and induced penalties. As a 
result, revenue losses may become very large, though infre-
quently. This has motivated the proposal of risk-aware market 
participation strategies, which are similar to those in financial 
markets. With the increasing importance of storage in energy 
systems, hedging may come from operating additional assets 
instead of being based only on market participation strategies.

Forecasting Use Cases for  
System Operation and Markets
If the net load is underestimated, there is the potential for 
large costs or load curtailments. Conversely, if it is over-
estimated, there is a relatively mild increase in operating 
expenses. The asymmetric costs of errors are the major 
reason operators should (and do) recognize risk in making 
decisions. Simple rules of thumb are inadequate to man-
age risks when variable renewable energy is providing 30%, 
50%, or even more of the supply. Over the past decade, 
researchers and vendors have developed powerful tools that 
allow operators to explicitly quantify probability distribu-
tions of the net load that reflect current as well as future 
weather and consider them in operations decisions. 

Probabilistic forecasts of the wind, solar, and con-
sumer components of net load can be divided into two 
basic types:

 ✔ The first is a marginal probability distribution of a 
single variable, such as net load or one of its com-
ponents, at a particular time and specific location or 
system, conditioned on available weather information.

 ✔ The second is a multivariate characterization, ac-
counting for dependencies either over time (such as 
the evolution of wind over the day), space (for exam-
ple, the diversity of solar resources over a region at a 
particular time), or components (accounting for wind, 
solar, and load correlations). These characterizations 
can be in the form of formulas for joint distributions 
or, more commonly, a set of possible scenarios, such 
as an ensemble of NWP forecasts.

Some of the simpler ways in which these probabilistic 
forecasts can be used include setting reserve requirements, 
where the amount of procured reserve is based on an a priori 
tolerable risk level—such as covering 95% of occurrences or 
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figure 2. The evolution of forecasting applications: load, renewable energy, and fuel predictions will be used to develop 
other forecasts of increasing needs in the future. 
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a more sophisticated balancing of costs and risks from dif-
ferent reserve levels. Another example might be construct-
ing market offers for renewable output based on a preset risk 
level, for instance, as is commonly reflected in the value-at-
risk limits to which traders are subject.

Figures 3 and 4 give an example of how probabilistic solar 
predictions for a particular time and place, the simplest type 
of forecast, are useful for informing the selection of a reserve 
requirement based on a preset probability of exceedance. The 

figures show how forecasts of the degree of uncertainty in solar 
power could be used to develop weather-conditioned require-
ments for the California Independent System Operator (CAISO) 
real-time flexible ramp product. In particular, they show how 
the width of the 50th percentile of global horizontal irradiance 
(GHI) derived from 2-h-ahead probabilistic forecasts, such as 
those in Figure 3, could inform ramp requirements.

The CAISO’s flexible ramp product procures spare capac-
ity in upward and downward directions to accommodate not 
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figure 3. A site-specific, 2-h-ahead probabilistic global horizontal irradiance forecast [7 and 20  April 2020, site location:  
Los Angeles, California], generated by the Watt-Sun probabilistic forecasting system. (Source: IBM; used with permission.)
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only net load ramps in the real-time market but also uncer-
tainty in both directions. The process proposed in Figures 3 
and 4 exploits a statistical relationship between that index of 
GHI uncertainty and the 90th or 95th percentile of forecast 
ramp errors in the upward direction (i.e., underestimation 
errors used to specify the amount of flexible ramp product).

Figure 4 shows two such relationships that could be used 
for this purpose. These relationships can be derived, for 
instance, by classification [Figure 4(a)], quantile regression 
[Figure 4(b)], or machine learning methods. Production cost 
simulations have shown that such a process can potentially 
reduce the average procurement expenses while improving 
system reliability. The next three sections describe other 
applications involving the use of probabilistic forecasts to 
inform operating decisions. First, how such forecasts can be 
used to help manage extreme weather events is discussed, 
followed by explorations of how forecast information can 
be used to set regulation requirements in daily markets and 
perform week-ahead resource assessments, and then clos-
ing with a discussion of needed innovations and research.

Managing Extreme Events
As evidenced by the recent cold wave that brought days of 
outages to the Texas interconnection, the electric system 
has always been significantly impacted by weather. Tem-
perature and humidity are primary modulators of demand. 
Temperature also affects transmission capacity limits, 
thermal and renewable unit capacity ratings, and generator 
outage rates. Wildfires, wind (including strong winds or 
rare extreme events, such as convective downbursts), ice, 
and lightning all impact transmission and distribution sys-
tems. In the case of fires, the resultant smoke and dust also 
significantly reduce PV output.

As the penetration of weather-driven renewable gen-
eration increases, weather dependence is increasing con-
currently. It is also becoming more complex as additional 
weather variables (e.g., wind speed and insolation) interact 

with temperature, humidity, and precipitation to create non-
linear and nuanced relationships impacting both supply and 
demand. This requires an evolution of system planning, espe-
cially regarding how extreme events are handled. 

The recent events in Texas illustrate that extreme events must 
be not only forecast in the operational time horizon but planned 
for in the system design phase, with a particular focus on what 
type of extreme events the system should be designed to handle. 
A perfect prediction of demand and renewable resources is not 
useful if generation is unavailable to serve the load due to out-
ages or a lack of fuel (such as coal, gas, wind, or sun). 

As wind and solar provide increasing proportions of elec-
tric generation, the nature of extreme events will evolve dra-
matically. This is illustrated as follows with an example that 
compares the famous February 2011 cold wave to a much 
weaker one that hit the central United States in February 2008.  

The 2011 event saw almost a third of the nation expe-
riencing temperatures below 0 °F (–18 °C), with numerous 
records being broken. The 2008 occurrence, while cold, was 
not an extreme, highly improbable event for the electric sys-
tem by traditional metrics. However, a recent U.S. Depart-
ment of Energy study into 2050 capacity scenarios showed 
that the 2008 event placed the Eastern Interconnection under 
more stress than the 2011 episode. This is because the avail-
able wind generation in the 2011 case is much higher than 
that of the 2008 example. Consequently, the net load (i.e., 
the total load minus the renewable generation) is much lower 
than that of the 2008 event.

Figure 5 shows the national daily wind capacity factor devia-
tion from the normal for each day of the two events. It clearly 
illustrates that the available wind energy was much better in 2011 
than in 2008, but it also shows large geographic heterogeneity 
and, thus, the importance of geographic diversity in capacity 
buildout. Despite the 2011 event featuring colder temperatures 
and higher loads, the load that needed to be met by nonrenewable 
sources was lower than for the 2008 event when modeled with 
2050 generation infrastructure.

1 February 2011 2 February 2011 20 February 2008 21 February 2008

3 February 2011 4 February 2011 22 February 2008 2 February 2008

0.7
0.56
0.42
0.28
0.14
0
–0.14
–0.28
–0.42
–0.56
–0.7 D

ai
ly

 C
ap

ac
ity

 F
ac

to
r 

D
ev

ia
tio

n

(a) (b)

figure 5. The national daily average wind capacity factor comparison between the (a) February 2011 and (b) February 
2008 events. 
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System operators need to be aware of this paradigm shift 
and understand that some weather events currently deemed 
benign will lead to system stress. The focus should not merely 
be on events that drive extreme loads, but, rather, it should shift 
to looking at events driving extreme net loads.

Smarter Procurement of Regulation 
Requirements at the CAISO
As renewable penetration grows on the CAISO system, it 
has become more important to develop methodologies to 
incorporate products into the CAISO market optimization 
to assist with uncertainty from the increasing capacity of 
renewable resources. The CAISO products to assist with 
uncertainty include regulation or operating reserves, flex-
ible ramp requirement, and a new product in development: 
imbalance reserves. These can provide the flexibility needed 
to assist with forecast deviations or movement between dif-
ferent periods. For this discussion, the focus is on smarter 
procurement of regulation requirements or operating reserves.

Regulation requirements account for active power capacity 
held above or below expected average energy schedules to respond 
to changing system conditions under operational timeframes. For 
the California ISO, the focus is the prior 5 min to the current sys-
tem condition. Regulation requirements are held for many rea-
sons—maintaining frequency, reducing area control error (ACE), 
power plant contingencies, forecast error for demand, behind-the-
meter generation, and large-scale renewable generation. In the past 
few years, the CAISO has partnered with multiple research part-
ners to develop and trial methodologies to optimize the regulation 
capacity required during operating hours when the need is less but 
increase operating reserves when it is greater. 

The current methodology utilized is based on a statistical 
analysis of the ACE signals and actual regulation applied to 

the system to correct ACEs. The sum of ACEs and actual 
regulation applied to the system to correct ACEs is referred 
to as ACE*. The base statistical analysis is updated monthly 
at a minimum. Figure 6 shows the last 30 days of ACE* 
(red lines) in combination with the regulation recommenda-
tion (gray and yellow lines). The risk tolerance percentiles 
forming the regulation recommendation within Figure 6 are 
for the 98% (gray lines) and 95% (yellow lines) confidence 
bands. Note that the risk tolerance percentiles are configu-
rable. If the CAISO finds that the regulation requirement 
recommendation hits outside the bands, impacting opera-
tional conditions, it indicates the potential need for adjust-
ment of the risk tolerance parameter.

Figure 7 shows an additional tool that allows the CAISO 
to further analyze certain days and look at some of the main 

figure 6. An example of a monthly look at ACE* alongside 
requirement recommendations.  
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drivers for regulation use [demand (blue/
red), wind (blue/red), solar (blue/red), and 
net load (blue/red)]. The ability to see how 
individual days react gives further informa-
tion about each weather pattern’s impact on 
regulation requirements.

By implementing the ACE* methodol-
ogy, the CAISO has seen 50–70% improve-
ment in meeting the actual regulation 
requirement. This improvement was deter-
mined by looking at how many times ACE* 
is outside the regulation recommendation. 
The CAISO continues to explore smarter 
regulation procurement methodologies. In 
2021, the CAISO plans to trial a method-
ology that utilizes both historical statistical 
information and probabilistic forecast infor-
mation to compare the accuracy of the cur-
rent methodology against the new options. 

Accounting for Forecasting  
Uncertainty in the Week-Ahead  
Resource Assessment Process
The week-ahead resource assessment pro-
cess is used to ensure there is a sufficient 
supply of electricity to meet the expected 
demand in the week ahead. Several factors 
influence this assessment, including plant 
or equipment outages, network constraints, 
and the expected level of demand. 

Over the last decade, the east coast elec-
tricity grid in Australia has had an excep-
tional increase in the penetration of behind-
the-meter rooftop PV installations, with one 
in three houses in some locations now having 
rooftop systems. The grid’s generation com-
position has also seen significant change, 
with the installation of more than 22  GW 
of variable renewable energy capacity in a 
grid with a peak load of 36 GW. These dif-
ferences have made the week-ahead resource 
assessment process increasingly sensitive 
to weather predictions. 

The accuracy of the forecast inputs is 
increasingly driven by the expected weather 
conditions. For example, a large high-pressure 
system over continental Australia typically 
produces clear skies, light winds, and pleas-
ant temperatures. These conditions are ideal 
for accurately predicting electricity demand as 
well as wind and solar generation, and uncer-
tainty in the forecasts feeds into the week-
ahead resource assessment. 

Conversely, dynamic weather patterns, 
such as tropical cyclones, can produce 

In
pu

t
X

1

In
pu

t
X
n

In
pu

t
X
n

In
pu

t
X

1

In
pu

t
X
n

In
pu

t
X
n

M
1

M
2

M
n

D
ec

is
io

n
M

ak
in

g 
T

D
ec

is
io

n
d

D
ec

is
io

n
d

Θ
1∗

Θ
2∗

Θ
n∗

F
or

ec
as

tin
g 

M
od

el
s 

fo
r

E
ne

rg
y 

an
d 

M
ar

ke
t Q

ua
nt

iti
es

O
pt

im
iz

at
io

n 
M

od
el

fo
r 

T
ra

di
ng

 D
ec

is
io

ns

F
or

ec
as

tin
g 

an
d 

T
ra

di
ng

A
rt

ifi
ci

al
 N

eu
ra

l N
et

w
or

k
M

od
el

H
um

an
 

in
 th

e
Lo

op

In
cr

ea
se

In
te

rp
re

ta
bi

lit
y

Θ
∗

fi
gu

re
 8

. T
he

 fu
tu

re
 e

vo
lu

tio
ns

 in
 th

e 
m

od
el

 c
ha

in
 th

an
ks

 to
 m

ac
hi

ne
 le

ar
ni

ng
 te

ch
ni

qu
es

. (
So

ur
ce

: S
m

ar
t4

R
ES

 p
ro

je
ct

; u
se

d 
w

ith
 p

er
m

is
si

on
.)



november/december 2021 ieee power & energy magazine  85

fronts; patchy, fast-moving clouds; and gusting wind condi-
tions. It is generally difficult to accurately forecast electric-
ity demand as well as wind and solar generation for these 
conditions, and this leads to higher uncertainty in the fore-
casts feeding into the process. 

Recognizing the increasing importance of understand-
ing forecast uncertainty to the operation of a secure power 
system, in 2018, a change to the rules governing Australia’s 
electricity system introduced a probabilistic assessment of 
the forecast inputs into the week-ahead resource assessment 
process. To account for the uncertainty inherent in each of 
the forecast inputs, the Australian Energy Market Operator 
developed a machine learning model (based on a Bayesian 
belief network) trained on more than 20 million data points 
of historic forecast errors. 

Using the forecast weather conditions for the week ahead 
as input, the machine learning model gives a conditional 
probability of the expected level of forecast error under those 
conditions. The expected forecast error from the network is 
then used in the week-ahead resource assessment to indicate 
the amount of reserve generation above the predicted level of 
demand necessary to ensure a reliable energy supply. 

Innovation and Future Research
The accuracy of operational renewable energy forecasting 
tools remains low in challenging situations such as evolving 
weather fronts. Improved accuracy translates into higher 
competitiveness of RESs in markets and more economically 
efficient and safe operation of the power system.

These factors stimulate intense research internation-
ally in the field of renewable energy forecasting. Consider-
ing the model chain and associated gaps and bottlenecks 
shown in Figure 1, numerous directions of future research 
emerge. Some stem from new sources of available data (i.e., 
lidars, radars, sky cameras, and satellites), allowing better 
modeling of weather variables and RES production. NWP 
models may benefit from RES plants as distributed sensors 
for data assimilation.

RES forecasting models need to consider multiple data 
sources, in contrast to the mainstream approach, where tai-
lored models are built upon for specific data sources (i.e., 
satellite images for PV predictions up to 6 h ahead). More 
general approaches may lead to a simpler model chain where 
forecasting models can cover multiple timeframes. 

Beyond convergence in the temporal scales, models based 
on hierarchical forecasting are needed to enable the compat-
ibility of predictions and associated uncertainty at different 
geographical scales. Recent work has shown that using data 
from neighboring RES sites improves the accuracy of a site. 
One of the related directions is to develop approaches for 
data sharing that respect privacy and confidentiality con-
straints, accompanied by data market concepts to facilitate 
and incentivize data owners to share their data.

Contributions from artificial intelligence techniques may 
support massive data flow processing. They can be used to 

develop prescriptive analytics for decisions (i.e., trading) 
based on the input data while replacing multiple forecasting 
and optimization steps, as shown in Figure 8.

Finally, new application use cases continuously appear 
where classical or new forecasting products are required. 
The main challenge is how to develop decision support 
tools that efficiently account for the inherent uncertainties, 
a massive amount of streaming data, and features to sup-
port human-in-the-loop informed decision making. Multi-
disciplinary research initiatives are being undertaken that 
demonstrate the benefits of collaborative efforts to tackle the 
complex nature of these problems.
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