Bijan Nouri, Niklas Blum, Stefan Wilbert & Luis F. Zarzalejo

Overview

- Motivation
- Nowcasting systems
 - Persistence approach
 - All sky imager approach
 - Hybrid approach
- Validation
- Conclusion

Motivation

- Strong solar irradiance variabilities in space and time on the local scale occur due to cloud passing
- Derive nowcasts from local observations which are suitable to describe variabilities induced by clouds
- Improved situational awareness \rightarrow better local grid and power plant management under error prone variable conditions (e.g. less curtailment, cheaper balancing, extended battery life,...)
- Nowcasts accuracy is decisive → **objective reduce nowcast uncertainties**

Nowcasting systems Persistence approach

Persistence nowcast is based on the work from Ineichen & Perez (2002) [1]

- Linke turbidity factor (TL) is calculated using the GHI
- For GHI nowcasts the TL is kept constant while considering future solar positions

Hybrid approach

ASI NC lead time 1 min

Hybrid approach

Pixel by pixel sliding validation over 5 minute lasting periods

Hybrid approach

- RMSD derived from previous nowcasts
- Current nowcasts which describe future conditions

 Combined hybrid nowcasts using accuracy weighting approach [5]

$$GHI_{LT,px} = \frac{1}{\sum_{j=1}^{2} \frac{1}{RMSD_Sl_{LT,px,j}}} \cdot \sum_{j=1}^{2} \frac{GHI_{LT,px,j}}{RMSD_Sl_{LT,px,j}}$$

Validation

- Validation period: 62 days at CIEMAT's Plataforma Solar de Almería (Spain)
- Reference systems: eight pyranometers spatially distributed over ≈1 km²

Validation

- Nowcasting uncertainties are highly dependent on the prevailing ambient conditions
 - Overall errors metrics might not be meaningful (depending on the chosen data set)
 - Discretization of validation data set in eight distinct variability conditions [6]

Class	Sky conditions	Clear sky index	Variability
1	Mostly clear sky	Very high	Low
2	Almost clear sky	High	Low
3	Almost clear sky	High/intermediate	Intermediate
4	Partly cloudy	Intermediate	High
5	Partly cloudy	Intermediate	Intermediate
6	Partly cloudy	Intermediate/low	High
7	Almost overcast	Low	Intermediate
8	Mostly overcast	Very low	Low

Validation

—Persistence

—All sky imager

—Hybrid

Conclusion

- Highly resolved irradiance nowcasts with considerable spatial coverage can be derived from all sky images in real time
- Performance of persistence nowcasts for the next minutes ahead are competitive during low variability conditions
- The newly developed all sky imager and persistence hybrid nowcasting approach outperforms under almost all conditions the former approaches [7]

Thank you! Questions?

bijan.nouri@dlr.de

- P. Ineichen, R. Perez, A new airmass independent formulation for the Linke turbidity coefficient. Solar Energy. 2002, 73(3), 151-157.
- [2] Y. Fabel, et al., Applying self-supervised learning for semantic cloud segmentation of all-sky images. Atmospheric Measurement Techniques Discussions. 2021, 1-20.
- [3] B. Nouri, et al., Cloud height and tracking accuracy of three all sky imager systems for individual clouds. Solar Energy. 2019, 177, 213-228.
- [4] B. Nouri, et al., Determination of cloud transmittance for all sky imager based solar nowcasting. Solar Energy. 2019, 181, 251-263.
- [5] R. Meyer, et al., Combining solar irradiance measurements and various satellite-derived products to a site specific best estimate. 2018, in: SolarPACES Conference. pp. 1–8
- [6] M. Schroedter-Homscheidt, et al., Classifying ground measured 1 minute temporal variability within hourly intervals for direct normal irradiances. 2018 Meteorol. Z. 2018.
- [7] B.Nouri, et al., A hybrid solar irradiance nowcasting approach: combining all sky imager systems and persistence irradiance models for increased accuracy. 2021, Solar RRL, 2100442

