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ISGAN in a Nutshell
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Grids
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Strategic platform to support high-level government 
knowledge transfer and action for the accelerated 
development and deployment of smarter, cleaner 

electricity grids around the world

International Smart Grid Action Network is 
the only global government-to-

government forum on smart grids.  

an initiative of the 

Clean Energy 

Ministerial (CEM)
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ISGAN’s worldwide presence
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Value proposition
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Smart4RES in a nutshell
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Smart4RES in a nutshell
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Smart4RES vision

Achieve outstanding improvement in RES predictability 

through a holistic approach, that covers the whole model 

and value chain related to RES forecasting 

Improvement from collaborative RES forecasting

Potential for improvement with spatial-temporal 

approaches up to 20% for 6h ahead for solar energy and 

up to 15-20% for wind energy

Lack of privacy guarantees and price-based incentives to share data



Smart4RES consortium
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6 countries

12 partners

11/2019-4/2023

Funds: H2020 
programme

Budget: 4 Mio€
Duration: 3.5 years

End-users

Universities

Research

Industry

Meteorologists



Motivation for data sharing & 
collaborative analytics
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Data Sharing: Motivation

• Increasing volume of geographically distributed data

• Improvement in forecasting accuracy by this data

• Main barriers

• Data privacy and confidentiality

• Lack of economic signals for sharing (collaborating with) data

• Lack of business cases for collaborative analytics
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Collaborative Analytics
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Model

from centralized to distributed learning

Master Node

Model

Worker Node

ΔW1

Aggr(ΔW1+ΔW2+ ΔW3)

Worker Node

ΔW2

Worker Node

ΔW3

Federated 

learning as 

industry standard

• Exchange raw data → NO

• Exchange model coefficients → NO 

(partially) 

• Exchange model outputs → YES

• Data divided by features (not by 

observations)

DATA SHARING IN



Possible Use cases for Data Sharing
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RES Forecasting

Benefit: Improve forecasting skill in minutes to day-ahead 

time horizon & exploit heterogenous data sources

Weather Modelling

Benefit: Liberalization of weather data trading → access to 

large-scale weather data

Privacy & 

monetization
Monetization

Source: Data Basin

How to price 

weather 

data?



Possible Use cases for Data Sharing
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Peer-to-peer (P2P) Trading

Benefit: Secure analytics with personal data → better 

decision-making & more trust

Power Transformer Condition

Benefit: Data augmentation (faults, dissolved gas analysis, 

sensors) → improved maintenance policies

Utility A

Utility C

Utility B

€
€

enable sharing of energy 

transactions and usage data



Collaborative learning for RES 
forecasting 
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RES Collaborative Forecasting
Formulation
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Vector Autoregressive 

Model (VAR)
𝒀 = 𝒄 + 𝑩𝒁 + 𝑬

Z: lagged power 

observations

1

Y1,tY1,t-1Y1,t-2
…

2

Yt,2Y2,t-1Y2,t-2

…

N

YN,tYN,t-1YN,t-2
…

Example for 

2 PV sites 𝑌1,𝑡 𝑌2,𝑡 = 𝑐1 𝑐2 +
𝐵
1,1
1 𝐵

1,2
1 𝐵

1,1
2 𝐵

1,2
2

𝐵
2,1
1 𝐵

2,2
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2,1
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2,2
2 ∙

𝑌1,𝑡−1
𝑌2,𝑡−1
𝑌1,𝑡−2
𝑌2,𝑡−2

+ 𝐸1,𝑡 𝐸2,𝑡

B: coefficients matrix 

(to estimate)

constant terms 

(to estimate)

white noiseforecasted power

multivariate linear model

power forecasts for multiple sites as a function 

of past power observations from all sites



Iterative estimation

RES Collaborative Forecasting
State-of-the-art distributed learning
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Distributed 

coefficients 

estimation
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C. Gonçalves, R.J. Bessa, P. Pinson, “A critical overview of privacy-
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Distributed learning with ADMM (Alternating Direction Method of Multipliers)



RES Collaborative Forecasting
Privacy-preserving Protocol
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RES Collaborative Forecasting
Privacy-preserving Protocol
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(1) Power data encryption with linear algebra (M: 

random matrix – unknown but built by all agents)   
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(2) Coefficients encryption with linear algebra (Q: 

random matrix – own by each agent)   
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(2) Coefficients encryption with linear algebra (Q: 

random matrix – own by each agent)   



RES Collaborative Forecasting
Privacy-preserving Protocol

21

Encrypted 

data

Distributed 

computation
==

data 
from 
WF3

P
o

w
e

r 
W

F
1

P
o

w
e

r 
W

F
2

P
o

w
e

r 
W

F
3

data 
from 
WF1

data 
from 
WF2

data 
from 
WF3

P
o

w
e

r 
W

F
1

P
o

w
e

r 
W

F
2

P
o

w
e

r 
W

F
3

data 
from 
WF1

data 
from 
WF2

Power for 

multiple 

locations

Lagged power 

observations

==

P
o

w
e

r 
W

F
1

P
o

w
e

r 
W

F
2

P
o

w
e

r 
W

F
3

E
n

c 
P

 W
F

1

E
n

c 
P

 W
F

2

E
n

c 
P

 W
F

3

Enc
Coef
WF1

Enc 
Coef
WF2

Enc
Coef
WF3

Enc 
data 
from 
WF3

Enc
data 
from 
WF1

Enc 
data 
from 
WF2

Enc
Coef
WF1

Enc 
Coef
WF2

Enc
Coef
WF3

Coef
WF1

Coef
WF2

Coef
WF3

..

Coefficients

EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING

(3) Distributed computation of coefficients with ADMM
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(4) Obtain original coefficients with Q matrix 

(same coefficients with privacy protocol) 
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Agents (RES Producers)

Central node (hub)

Centralized 

Model
Peer-to-Peer 

Model

EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING
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Step 1.

Agents compute their encrypted coefficients
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Centralized 

Model
Peer-to-Peer 

Model

Step 2.

Agents share their encrypted contribution
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Centralized 

Model
Peer-to-Peer 
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Step 3.
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Centralized 

Model
Peer-to-Peer 

Model

Step 4.

Agents obtain conciliation matrix and proceed

to Step 1

EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING



RES Collaborative Forecasting
Results for Évora PV Dataset
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Asynchronous communication: equal failure probabilities are assumed for all agents

❑ Better performance of the P2P scheme

▪ Centralized: if one agent fails the algorithm proceeds without its information 

▪ P2P: agent communicates its contribution to some peers → probability of information lost is smaller

❑ Computational performance 

▪ Privacy protocol: 65.5s 

▪ 0.05s (centralized) and 0.12s (P2P) for model fitting 

ÉVORA

44 Domestic PV



RES Collaborative Forecasting
Results for Évora PV Dataset
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RMSE improvement of Privacy-VAR over AR (autoregressive) & Analogs search (collaborative w/ privacy)

Some data owners contribute to improve competitors’ forecast without getting the same benefit (error improvement)

↓
Even if privacy is ensured, such agents may be unwilling to collaborate → data monetization (data markets)



Data Markets
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Data Market Basics

• Market components

• Key players

• Data buyer(s)

• Data seller(s)

• Monetary Values

• Seller’s cost of offering data

• Buyer’s profit

• Data payment

• Market procedure 
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷

• Data seller(s)

• Monetary Values

• Seller’s cost of offering data

• Buyer’s profit 𝐹(𝐷)

• Data payment

• Market procedure 
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷

• Data seller(s) S with data ∆𝐷

• Monetary Values

• Seller’s cost of offering data 

• Buyer’s profit 𝐹(𝐷)

• Data payment

• Market procedure 
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• Market components
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷

• Data seller(s) S with data ∆𝐷

• Monetary Values

• Seller’s cost of offering data 

• Buyer’s profit 𝐹(𝐷) < 𝐹(𝐷 + ∆𝐷)

• Data payment

• Market procedure 

1) Buyer can profit from seller’s data
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷

• Data seller(s) S with data ∆𝐷

• Monetary Values

• Seller’s cost of offering data C(∆𝐷)

• Buyer’s profit 𝐹(𝐷) < 𝐹(𝐷 + ∆𝐷)

• Data payment 𝑅 < ∆𝐹 = 𝐹 𝐷 + ∆𝐷 − 𝐹(𝐷)

• Market procedure 

1) Buyer can profit from seller’s data

2) Buyer offers seller monetary rewards
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Data Market Basics

• Market components

• Key players

• Data buyer(s) B with known data 𝐷

• Data seller(s) S with data ∆𝐷

• Monetary Values

• Seller’s cost of offering data 𝐂(∆𝑫) < 𝑹

• Buyer’s profit 𝑭(𝑫) < 𝑭(𝑫+ ∆𝑫)

• Data payment 𝑹 < ∆𝑭 = 𝑭 𝑫+ ∆𝑫 − 𝑭(𝑫)
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1) Buyer can profit from seller’s data

2) Buyer offers seller monetary rewards 

3) Seller either rejects or accepts offer
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Data Market Models:

• Monopolistic Data Seller
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Data Market Models:
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Data Market Models:
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Data Market Models:

• Monopolistic Data Seller

• Monopolistic Data Buyer

• Peer-to-Peer Multi-Seller Multi-Buyer
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an Energy Retailer: A Cooperative 

Game Approach,” arXiv e-prints, 2020.
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improve forecasts, 

reducing imbalance costs
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Outcome 1. Higher 

profit for data 

buyer, lower cost 

for energy supply 

Problem 1. RES 

generation 

uncertainty leads to 

imbalance costs

Step 1) Data from 

neighboring plants can help 

improve forecasts, 

reducing imbalance costs

Outcome 2. Higher 

profit for data seller

Step 2). Buyer 

offers data 

payment

Problem 2. Potential 

loss of privacy and 

competitiveness

Step 3). Seller

accepts 

payment



RES in a Wholesale Market: 2 Agents

Electric

Energy 

Pool

Outcome 2. Higher 

profit for data seller

Outcome 1. Higher 

profit for data 

buyer, lower cost 

for energy supply 

HIGHER TOTAL 

SOCIAL WELFARE

17/12/2020 EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING 70

Problem 1. RES 

generation 

uncertainty leads to 

imbalance costs

Step 2). Buyer 

offers data 

payment

Problem 2. Potential 

loss of privacy and 

competitiveness

Step 3). Seller

accepts 

payment

Step 1) Data from 

neighboring plants can help 

improve forecasts, 

reducing imbalance costs



RES in a Wholesale Market: Many Agents

Electric

Energy 

Pool

...

17/12/2020 EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING 71



RES in a Wholesale Market: Many Agents

Electric

Energy 

Pool

...

Payment

17/12/2020 EXTRACTING VALUE FROM DATA SHARING FOR RES FORECASTING 72

Architecture 1: 

Peer-to-Peer Model
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Architecture 2: 

Centralized Model

C. Gonçalves, P. Pinson, R.J. Bessa, 

“Towards data markets in renewable 

energy forecasting,” IEEE Trans. on 

Sust. Energy, In Press, 2020



• The cost of privacy is highly individual and difficult to quantify. As a result, the 

value of privacy preserving techniques is difficult to quantify as well.

• Data is a unique commodity. The table below compares data and energy*. 

Challenges

Market Production and Replication Value to Buyer Pricing

Energy
Produced at a certain cost, non-

replicable
Additive and known Decided a priori

Data

Usually a side-product that is 

produced at zero marginal 

costs, Replicable at no extra 

costs

Combinatorial: the value of a 

dataset is dependent on all other 

available data.

Dependent on buyer’s 

valuation of the dataset with a 

certain prediction task

*Concepts from publication:

A. Agarwal, M. Dahleh, and T. Sarkar, “A marketplace for data: An algorithmic solution,” ACM EC 2019 - Proceedings of the 2019 

ACM Conference on Economics and Computation, pp. 701–726, 2019.
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Take-Away Messages & 
Smart4RES Ongoing Research

• Collaborative learning improves forecast accuracy, which may yield additional 

individual or societal value in the market.

• Monetizing data promotes data exchanging by redistributing the added value, helping to 

address concerns about loss of privacy and competitiveness.

Smart4RES is planning to

• Design a suitable marketplace for data trading;

• Develop relevant data market concepts and create prototypes to foster awareness to 

the value of data markets;

• Extend the concept to different use cases from the energy sector;

• Collaborate with other domains, such as IoT, blockchain technologies, etc.
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Season1: Towards a new Standard for the entire RES forecasting value chain
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